

GridDyn

GridDyn is a power system simulator developed at Lawrence Livermore National Laboratory. The name is a concatenation of Grid Dynamics, and as such usually pronounced as “Grid Dine”. It was create dto meet a research need for exploring coupling between transmission, distribution, and communications system simulations. While good open source tools existed on the distribution side, the open source tools on the transmission side were limited in usability either in the language or platform or simulation capability, and the commercial tools while quite capable simply did not allow the access to the internals required to conduct the research. Thus the decision was made to design a platform that met the needs of the research project.

Building off of prior efforts in grid simulation, GridDyn was designed to meet the current and future needs of the various grid related research and computational efforts. It is written in C++ making use of recent improvements in the C++ standards. It is intended to be cross platform with regard to operating system and machine scale. The design goals were for the software to be easy to couple with other simulations, and be easy to modify and extend. It is very much still in development and as such, the interfaces and code is likely to change, in some cases significantly as more experience and testing is done. It is our expectation that the performance, reliability, capabilities, and flexibility will continue to improve as projects making use of the code continue and new ones develop. We expect there are still many issues so any bug reports or fixes are welcome. And hopefully even in its current state and as the software improves the broader power systems research community will find it useful.

Basics

	Getting Started
	Prerequisites

	Installation Notes

	Running GridDyn

	GridDyn Components
	Buses

	Areas

	Links

	Relays

	XML Input
	Initial Example

	Parameter Specification

	Functions and Mathematical Operations

	Component Description

	Object Identification

	Special Elements

	Design Philosophy
	Modularity

	Mathematics

	Model Definition

	Performance

	Model Libraries

	Testing

	Test Programs

	Development Notes
	Interface and Executables

	Models

	Others

	File Input

Reference

	CMake Options

	Settable Object Properties

Contributing

	Style Guide
	Naming Styles

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Prerequisites

GridDyn is written in C++ and makes use of a few external libraries not included in the released source code. External software packages needing
installation prior to compilation of GridDyn include:

	A modern C/C++ compiler for building

	The cmake command for building

	The git command for getting the code

	Boost 1.61 or greater

	Doxygen for building in-source documentation

	KLU in SuiteSparse - on Linux the SuiteSparse package typically has KLU, on macOS the Homebrew suite-sparse package can be used

Currently supported compilers are:

	Visual Studio 2015

	GCC 4.9.3 or higher

	Clang 3.5 or higher (OpenMP must be off to use 3.4)

	Intel 16.0 (not well tested as of yet)

See CMake Options for a list of CMake configuration options to turn on/off different features.

Installation Notes

Mac

For building on macOS, use Homebrew and make sure git, CMake, suite-sparse, Boost, and OpenMP are installed.

Linux

Depending on the distribution, Boost or an updated version of it may need to be installed (the package in the package manager may be significantly outdated).
SuiteSparse/KLU may need to be installed as well. Typically CMake is used to generate Makefiles, but it can also be used to generate Eclipse projects.
BOOST_INSTALL_PATH and SuiteSparse_INSTALL_PATH may need to be user specified if they are not in the system directories. This can be done with
the cmake-gui or the command line cmake. Then running make will compile the program. Running make install will copy the executables and
libraries to the install directory.

Windows

GridDyn has been built with Visual Studio 2015 and MSYS2. The MSYS2 build is like building on Linux, and works fine with GCC, though the current Clang
version on MSYS2 has library incompatibilities with some of the Boost libraries due to changes in GCC. I don’t fully follow what the exact issue is but
Clang won’t work on MSYS2 to compile GridDyn unless SUNDIALS, Boost, and KLU are compiled with the same compiler, I suspect the same issue is also present
in some other Linux platforms that use GCC 5.0 or greater as the default compiler. The SuiteSparse version available through pacman on MSYS2 seems to work fine.

For compilation with Visual Studio, Boost will need to be built with the same version as is used to compile GridDyn. Otherwise, follow the same instructions.

Running GridDyn

The main executable for GridDyn is built as gridDynMain and is intended to load and run a single simulation. The executables testSystem, testComponents,
testLibrary, testSharedLibrary, and extraTests are test programs for the unit testing of GridDyn. A server mode for interactive sessions is a work in
progress, but is not operational at the time of this release.

> ./gridDynMain --version

will display the version information.

> ./gridDynMain --h

will display available command line options.

Typical usage is:

> ./gridDynMain [options] inputFile [options]

The primary input file can be specified with the flag –input or a single flagless argument. Additional input files should be specified using -i or
–import flags.

Command line only options:

	--help

	Print the help message

	--config-file arg

	Specify a config file to use

	--config-file-output arg

	File to store current config options

	--mpicount

	Setup for an MPI run, prints out a string listing the number of MPI tasks that are required to execute the specified scenario, then halts execution

	--helics

	Setup for a HELICS run for a coupled co-simulation

	--version

	Print version string

Configuration options:

	-o, --powerflow-output filename

	File output for the powerflow solution. Extension specifies a type (.csv, .xml, .dat, .bin, .txt), unrecognized extensions default to the same format
as .txt

	-P, --param arg

	Override simulation file parameters, -param ParamName=<val>

	-D, --dir directory

	Add search directory for input files

	-i, --import filename

	Add import files loaded after the main input file

	--powerflow-only

	Set the solver to stop after the power flow solution

	--state-output filename

	File for saving states, corresponds to –save-state-period

	--save-state-period arg

	Save state every N ms, -1 for saving only at the end

	--log-file filename

	Log file output

	-q, --quiet

	Set verbosity to zero and printing to none

	--jac-output arg

	Powerflow Jacobian file output

	--v, --verbose arg

	Specify verbosity output, 3=verbose, 2=normal, 1=summary, 0=none

	-f, --flags arg

	Specify flags to feed to the solver, e.g. –flags=flag1,flag2,flag3 no spaces between flags if multiple flags are specified or enclose in quotes

	-w, --warn arg

	Specify warning level output for input file processing, 2=all, 1=important, 0=none

	--auto-capture filename

	Automatically capture a set of parameters from a dynamic simulation to the specified file format determined by extension. Either .csv or .txt will
record the output in csv format, all others will record in the binary format. The filename must be specified with –auto-capture-period if used.

	--auto-capture-period arg

	Specifies the automatic capture period in seconds. If specified without a corresponding –auto-capture file, a file named auto_capture.bin is created.

	--auto-capture-field arg

	Specify the fields ot be captured through the auto capture. Defaults to auto. Can be a comma or semicolon separated list, no spaces unless enclosed
in quotes.

The configuration routine will look for and load a file named gridDynConfig.ini if it is available. It will also load any command line specified config
file. The order of precedence is command line, user specified config file, then system config file (if available).

GridDyn Components

Components in GridDyn are divided into three categories: primary, secondary, and submodel. Primary components include buses,
links, relays, and areas and define the basic building blocks for power grid simulation. Secondary components are those which
tie into busses and consume or produce real and reactive power. The two component types in the secondary category are loads and
generators. Submodels are any other component in the system and can form the building blocks of other components. A majority of
the differential equations in the dynamic simulations are found in submodels. Submodels include things such as exciters, governors,
generator models, control systems, sources, as well as several others. There are a few other types of objects in GridDyn, but
they generally are used for specific purposes and do not take part in the equations unless interfaced through another object. The
component types currently available in GridDyn are detailed in another section.

The Development Notes section has information on the current development status of various components.

Buses

Buses form the nodes of a power system. They act as containers for secondary objects and attach to links. The default bus type is an
AC bus which in typical operation would have 2 states (voltage and angle). 4 types of bus operation are available, PQ, PV, slack,
and fixed angle. The practical value of fixed angle buses is unknown but was included for mathematical completeness and describes a
bus whose angle and reactive power are known.

The residual equation used in the bus model take one of two forms

\[f_v(X)=\sum_{i=0}^{gens} Qgen_i(V,\theta,f) + \sum_{i=0}^{loads} Qload_i(V,\theta,f) + \sum_{i=0}^{lines} Qline_i(V,\theta,f)\]

for PQ and afix type buses and

\[f_v(X)=V - V_{target}\]

for PV and SLK type buses. The equations for \(\theta\) are very similar

\[f_{\theta}(X)=\sum_{i=0}^{gens} Pgen_i(V,\theta,f) + \sum_{i=0}^{loads} Pload_i(V,\theta,f) + \sum_{i=0}^{lines} Pline_i(V,\theta,f)\]

for PQ and PV type buses and

\[f_{\theta}(X)=\theta - \theta_{target}\]

for fixed angle and SLK type buses.

The frequency can be either extracted from an active generator attached to the bus or computed as a filtered derivative of the angle.
If it is computed the bus has an additional state as part of the dynamic calculations.

The bus model implemented in GridDyn also includes some ability to merge buses together to operate in node-breaker type configurations.
At present this is not well tested.

Areas

Areas define regions on the simulated grid. An area can contain other areas, buses, links, and relays. It principally acts as a container
for the other objects, though will eventually include controls such as AGC and other wide area controls. The simulation object itself is a
specialization of an area.

Links

In the most general form links connect buses together. As a primary object it can contain other objects, including state information. The
basic formulation is that of a standard AC transmission line model connecting two buses together. The code includes a number of possible
approximations.

Relays

Relays are perhaps the most interesting and unusual primary object included in GridDyn. The basic concept is that relays can take in
information from one object and act upon another. They add protection and control systems into the simulation environment. They exist
as primary objects since they can stand to operate on their own at the same level as buses and areas. They may contain states, other
objects, submodels, etc. They also act as gateways into communication simulations, functioning as measurement units and control
relays. And through relays a whole host of control and protection schemes can be implemented in simulation alongside normal power flow
and dynamic simulations. Examples of relays include fuses, breakers, differential relays, distance relays, and control relays, among
others.

XML Input

The following section contains a description of the XML input file format and how to construct and specify an input file in the GridDyn XML format.
The XML format is intended to be used solely in GridDyn to enable full access to all the capabilities and models that may or may not be defined in
other formats. All the actual interpreters have been designed to use an element tree structure. And as such the same reader code is used for the
XML interpreter and for a JSON interpreter, though there is some variance in the definitions of elements and attributes in those two contexts
meaning Json objects are somewhat more restricted in format. In the documentation, most of the examples will be in XML, but a few will be in JSON
for completeness.

Initial Example

A simple input case is as follows:

<?xml version="1.0" encoding="utf-8"?>
<GridDyn name="2bus_test" version="1">

<bus name="bus1">
 <type>SLK</type>
 <angle>0</angle>
 <voltage>1.05</voltage>
 <generator name="gen1">
 </generator>
 <load name="load1">
 <P>1.05</P>
 <Q>0.31</Q>
 </load>
</bus>

<bus name="bus2">
 <load name="load2">
 <P>0.45</P>
 <Q>0.2</Q>
 </load>
</bus>
<link from="bus1" name="bus1_to_bus2" to="bus2">
 0.127
 <r>0.0839</r>
 <x>0.51833</x>
</link>

<flags>powerflow_only</flags>
</GridDyn>

This small XML file defines a two bus system. There are 5 sections to this model description. The first line describes the standard XML header information
and is not used by GridDyn. The second line defines the simulation element and the name of the simulation. In general properties can be described in either
an element or as a property. There are certain aspects of parameters which can only be controlled in the element form, but for simple parameters either
works fine. Capitalization of properties also does not matter. All object properties in GridDyn are represented by lower case strings, the XML reader converts
all property names to lower case strings before input to GridDyn so capitalization doesn’t matter in the XML input. The property values themselves preserve
capitalization and it is on a per property basis whether capitalization matters. For naming capitalization is preserved such that “object1” is distinct from
“Object1”. For this XML file the simulation is given the name 2bus_test. The version is for record keeping only and has no relevance to the simulation.

The second block defines a bus object with a name of bus1. The bus is a slack bus indicated by <bustype>SLK</bustype>. Other options for this parameter
include PQ, PV, SLK, and afix. The angle and voltage are specified. A generator object is included. The element generator is recognized as a
component and a new generator object is created with a name of gen1. Finally a load is created with a name of load1 and a fixed real power of 1.05 and
a reactive power of 0.31.

The second bus is defined in a similar way, except it does not define a bustype which means it defaults to a PQ bus. The link is defined by:

<link from="bus1" name="bus1_to_bus2" to="bus2">
 0.127
 <r>0.0839</r>
 <x>0.51833</x>
</link>

The properties b, r, and x are defined in the XML as elements. The to and from fields are specified using the names of the buses. These properties
must be specified for the lines or the system will spit out a warning.

Finally, the last two lines specify that the simulation should stop after a power flow.

To add in dynamic modeling a few additional pieces of XML can be added. For our example, the powerflow_only flag at the bottom can be removed, and the
following lines can be added to the block for gen1:

<generator name="gen1">
 <dynmodel>typical</dynmodel>
 <pmax>4</pmax>
</generator>

This defines the generator to have a typical dynamic model, the meaning of which will be detailed in the section on model parameters for specific models [TODO]Add link to section[/TODO]. It
also specifies a pmax value of 4 per unit.

Next, an event can be added to the load attached to bus2 to change a parameter with the code shown below:

<bus name="bus2">
 <load name="load2">
 <P>0.45</P>
 <Q>0.2</Q>
 <event>@1|p=1.1</event>
 </load>
</bus>

The line <event>@1|p=1.1</event> defines an event such that at time 1.0 the p field of the load is set to 1.1, from the initial value of 0.45. More details
will be explained in the section on event specification [TODO]Add link to section[/TODO].

Finally, a block with a stop time and recorder can be added before the closing GridDyn tag:

<stoptime>10</stoptime>
<recorder period=0.5 field="auto">
 <file>twobusdynout.csv</file>
</recorder>

This sets the simulation to run until a stoptime of 10 seconds. The recorder xml element defines a recorder to capture a set of automatic fields at a period of
0.05 seconds, and capture it to the file twobusdynout.csv upon completion of the scenario. More dtails on recorder specification are available later in this document [TODO]Add link to section[/TODO].

The final listing after these changes is:

<?xml version="1.0" encoding="utf-8"?>
<GridDyn name="2bus_test" version="1">

<bus name="bus1">
 <type>SLK</type>
 <angle>0</angle>
 <voltage>1.05</voltage>
 <generator name="gen1">
 <dynmodel>typical</dynmodel>
 <pmax>4</pmax>
 </generator>
 <load name="load1">
 <P>1.05</P>
 <Q>0.31</Q>
 </load>
</bus>

<bus name="bus2">
 <load name="load2">
 <P>0.45</P>
 <Q>0.2</Q>
 <event>@1|p=1.1</event>
 </load>
</bus>
<link from="bus1" name="bus1_to_bus2" to="bus2">
 0.127
 <r>0.0839</r>
 <x>0.51833</x>
</link>

<stoptime>10</stoptime>
<recorder period=0.5 field="auto">
 <file>twobusdynout.csv</file>
</recorder>

</GridDyn>

Parameter Specification

Simple parameters can be specified via elements or as attributes. Default units are in seconds for all times and time constants unless individual models
assume differently. Power and impedance specifications are typically in PU values. Exceptions include basepower and basevoltage specifications which
are in MW and KV respectively. The default units on any rates are in units per second. However, individual models are free to deviate from this
standard as makes sense for them so check with the individual model type specification for details. Parameters in the XML can be specified in a number of
different forms that are useful in different contexts. Below is an example showing the various methods.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to test parameter setting methods-->
<GridDyn name="input_tests" version="0.0.1">
<bus name="bus1">
 <load>
 <param name="P" value=0.4></param>
 <param field="q">0.3</param>
 <param field="ip" units="MW">55</param>
 <param>yq=0.11</param>
 <param name="iq(MW)" value=32/>
 <yp>0.5</yp>
 </load>

 <load yq=0.74 >
 <p units="puMW"> 0.31</p>
 <param>q(MW)=14.8</param>
 <param name="yp" unit="MW" value=127/>
 </load>
</bus>
</GridDyn>

The main variants involve varying how the units are placed. Units can be placed as an attribute named unit or units on the parameters
either in a param element or and element named after the model parameter. They can also be placed in parenthesis at the end of the parameter
name when the parameter name is a string contained in the elemental form. Values can be places in a value element, as the content of an
element, or following an equal sign when defined as a string like <param>yq=0.11</param>. Parameters assuming the default units are allowed
to be placed as attributes of the object.

Functions and Mathematical Operations

GridDyn XML input allows mathematical operators and expressions in any parameter specification, including complex expressions. Supported
functions are shown in the tables that follow. In addition, most operators are supported including +, -, *, /, ^, and %. Operator precedence is respected as are parenthesis.
String operations are not supported but the definition system has features that support some use cases for string operations.

Zero argument mathematical expressions

	function

	details

	inf()

	results in a large number between 0 and 1

	nan()

	uses nan(“0”)

	pi()

	pi

	rand()

	produces a uniform random number between 0 and 1

	randn()

	produces a normal random number with mean 0 and standard deviation of 1.0

	randexp()

	produces a random number from an exponential distribution with a mean of 1.0

	randlogn()

	produces a random number from a log normal distribution

One argument mathematical expressions

	function

	details

	sin(x)

	sine of x

	cos(x)

	cosine of x

	tan(x)

	tangent of x

	sinh(x)

	hyperbolic sine of x

	cosh(x)

	hyperbolic cosine of x

	tanh(x)

	hyperbolic tangent of x

	abs(x)

	absolute value of x

	sign(x)

	return 1.0 if x>0 and -1.0 if x<0 and 0 if x==0

	asin(x)

	arcsin of x

	acos(x)

	arccosine of x

	atan(x)

	arctangent of x

	sqrt(x)

	the square root of x

	cbrt(x)

	the cube root of x

	log(x)

	the natural logarithm of x log(exp(x))=x

	exp(x)

	the exponential function \(e^x\)

	log10(x)

	the base 10 logarithm of x

	log2(x)

	the base 2 logarithm of x

	exp2(x)

	evaluates \(2^x\)

	ceil(x)

	the smallest integer value such that ceil(x)>=x

	floor(x)

	the largest integer value such that floor(x)<=x

	round(x)

	the nearest integer value to x

	trunc(x)

	the integer portion of x

	none(x)

	return x

	dec(x)

	the decimal portion of x trunc(x)+dec(x)=x

	randexp(x)

	an exponential random variable with a mean of x

Two argument mathematical expressions

	function

	details

	atan2(x,y)

	the 4 quadrant arctangent function

	pow(x,y)

	evaluates \(x^y\)

	plus(x,y)

	evaluates x+y

	add(x,y)

	evaluates x+y

	minus(x,y)

	evaluates x-y

	subtract(x,y)

	evaluates x-y

	mult(x,y)

	evaluates x*y

	product(x,y)

	evaluates x*y

	div(x,y)

	evaluates x/y

	max(x,y)

	returns the greater of x or y

	min(x,y)

	returns the lesser of x or y

	mod(x,y)

	return the modulus of x and y e.g. mod(5,3)=2

	hypot(x,y)

	evaluates \(sqrt{x^2+y^2}\)

	rand(x,y)

	return a random number between x and y

	randn(x,y)

	returns a random number from a normal distribution with mean x and variance y

	randexp(x,y)

	returns a random number from an exponential distribution with mean x and variance y

	randlogn(x,y)

	returns a random number from a log normal distribution with mean x and variance y

	randint(x,y)

	returns a uniformly distributed random integer between x and y inclusive of x and y

Component Description

Components are defined in elements matching the component name. For example

<exciter name="ext1">
 <type>type1</type>
 <Aex>0</Aex>
 <Bex>0</Bex>
 <Ka>20</Ka>
 <Ke>1</Ke>
 <Kf>0.040</Kf>
 <Ta>0.200</Ta>
 <Te>0.700</Te>
 <Tf>1</Tf>
 <Urmax>50</Urmax>
 <Urmin>-50</Urmin>
</exciter>

describes an exciter component as part of a generator. The name attribute or element is common for all objects. A description can also be defined
for all objects which is basically a string that can be added to any object. The type property is a keyword used to describe the detailed type of
the component. In the above example the specific type of the component is type1. GridDyn uses polymorphic objects for each of the components. The
type defined in the XML file for each component defines the specific object to instantiate. If type is not specified the default type of the component
is used.

Predefined components include:

	area

	defines a region of the grid

	bus

	the basic node of the system

	link

	the basic object connecting buses together

	relay

	primary object allowing control and triggers for other objects

	sensor

	a form of a relay specifically targeted at sensing different parameters and allowing some direct signal processing on measurements before output

	load

	the basic consumer of energy

	generator

	the basic producer of electricity

	genmodel

	the dynamic model of an electrical generator

	governor

	a generator governor

	exciter

	an exciter for a generator

	pss

	a power system stabilizer*

	controlblock

	a basic control block

	source

	a signal generator in GridDyn

	simulation

	a simulation object

	agc

	describes an automatic generation control*

	reserveddispatcher

	describes a reserve dispatcher*

	scheduler

	a scheduling controller*

	these objects are in development and do not work consistently

Several components are also defined that map onto the more general components, in some cases these define specific types, in others they are
simply maps. Examples include fuse=>relay, breaker=>relay, transformer=>line, block=>controlblock, control=>relay, and tie=>line.
Custom definitions can also be defined if desired through a translate element.

Object Identification

There are many instances where it is necessary to identify an object for purposes of creating links or to extract a property from another.
Internally there is a hierarchy of objects starting with the root simulation object. This allows a path like specification of the objects.
There are 2 different notations for describing an object path, one based on colons, the other more similar to the URI specification for WEB
like services, and both allow properties to be specified in a similar fashion. Objects can be referred to by 4 distinct patterns. The first
is by the name of the object. The name should be unique within any given parent object. The second uses an object component name and index
number, for example bus#0 would refer to the bus in index location 0; using bus!0 will also work the same as bus#0 but can be used
in settings where the ‘#’ is not allowed. All indices are 0 based. The fourth makes use of the user id of an object, to use this objects
would be identified by load$2 to locate the load with userID of 2.

When searching for an object the system starts in the current directory for the search. If it is not found it traverses to the root object
and starts the search from there.

An example of a path specified with the ‘:’ notation is area45::bus#6::load#0:p. The single colon marks that the final string represents
a property. The same object in the URI notation would be area45/bus#6/load#0?p.

In some cases mixed notation might work but it is not recommended. The property indication can be left off when referencing an entire object.
Starting the object identification string with an ‘@’ or a beginning ‘/’ implies searching starting in the root object, otherwise the search
starts at whatever the current object of interest is.

Special Elements

In addition to the components elements, several element names have special purposes.

translate

The translate element is used to create a custom object definition.

<translate name="special" component="exciter" type="type1"/>

Putting this command in the XML file will allow objects using “special” as the element name instead of specifying “exciter” in the element name
and a specific type. Translations, unlike definitions, are global and are only allowed in the root element of an XML file. IF you wish to specify
a default type for a component or other defined component translation then the name or component can be left out.

define

The GridDyn XML file allows specification of definition strings that can be used as parameter values or in other definitions.

<define name="constant1" value=5/>
<define name="constant2" value=46 locked=1/>
<define name="constant3 value="constant1*constant2" eval=1/>

The above snippet of code defines 3 constants. Internally constants are stored as strings. If the eval attribute is specified the value string
is evaluated before storing it as a string, otherwise it will be stored as a string and evaluated on use. The locked attribute defines a global
parameter that cannot be overridden by another define command. The mechanisms allow programmatic or command line overrides of any internal
definitions in the XML file. Inside the XML file they cross scope boundaries like a global variable. Regular definitions are only valid in elements
they were defined in and subelements. So if a definition is used, define it in the root scope or it will only be applicable in a subsection of the XML.

When using definitions they can be used as a variable in other languages wherever a string or numerical value would be used. They can also be used
in string replacements like the following code.

<bus name="bus_$#rowindex$_$#colindex$">

When evaluating the expression, the parts of the string between the $ signs gets evaluated first. In this case “#rowindex” and “#colindex” are
part of an array structure which is described in the subsection on arrays.[TODO]Add ref to array subheading[/TODO]

After the substring replacement, the entire expression is evaluated again for other definitions. There is a small set of predefined definitions
including %date, %datetime, and %time, which contain strings of the expected values at the time of file input.

custom

Translations are useful for readability, library elements allow duplication of objects with only minor modifications. For library elements the
object is constructed once from XML and duplicated. Custom objects allow duplication of objects or sets of objects from the XML. A reference to
the actual element source is stored and reprocessed at the time the custom object is encountered. This also allows a set of object to be defined
in one input form to be imported by a different form and used to create objects described in the first. For instance you could create a library
of different object sections and import that into another XML file and only use a few of the custom definitions you are interested in. Custom
objects can use other custom objects but cannot define new custom sections. Custom objects can define a set of required arguments and default values.
When calling the custom element arguments can be defined.

A brief example using custom elements is shown below.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to test custom elements-->
<griddyn name="customtest">
<custom name="cbus">
 <bus>
 <voltage>rand(0.95,1.05)</voltage>
 </bus>
</custom>
<array count="10">
 <cbus/>
</array>
</griddyn>

Another example using arguments is shown below.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to test custom elements-->
<griddyn name="customtest">
<custom name="busarray" args="1">
<array count="arg1">
 <bus>
 <voltage>rand(0.95,1.05)</voltage>
 </bus>
 </array>
</custom>
<busarray arg1="7"/>
</griddyn>

configuration

A configuration element can define some parameters and operations for the XML reader itself. There are currently 2 parameters that can be specified,
printlevel and match_type. The printlevel controls the verbosity of the output. The match_type controls the default match capitalization for
searching for specified fields. The following table shows valid values for these fields.

	parameter

	value

	details

	printlevel

	none(0)
summary(1)
detailed(2)

	print only warnings and errors
print only summary info
print detailed information

	match_type

	capital_case_match
all
exact

	match on specified, lower case, and upper case values (this is the default value)
match to all cases [lex]
only match to the given string. Ths operation can be used to process files where every component and XML description field is in lower case in the xml to speed up processing slightly

event

Events are changes that take place during the course of the GridDyn simulation execution. They can be as simple as the example used previously or contain
more complex specifications and multiple times and values. The events are likely to be updated significantly in the near future, and while much of the
specification will remain the same some new capabilities will be added.

Parameters for events are specified like those in the components. The available element or attribute names are shown in this table.

	parameter

	description

	target

	the object to extract data from

	field

	the field of the target object to capture

	time, t

	the time the event is scheduled to occur

	units

	the desired units of the output

	value

	the value associated with the event

	period

	for periodic events sets the period

	file

	the input file for a player type event

	column

	the column in a data file to use for the event

The field option of event specification is by far the most flexible. Any text directly in the event element is captured as the field.

recorder

Recorders are the primary data output system for GridDyn dynamic simulations. Like events, recorders have a set of parameters associated with them.
The details are in the table below. Multiple recorder elements can be specified and the recorder for a single file can have multiple elements that
get merged even if they are in different objects. They are keyed by recorder name and/or filename. Certain properties like the sampling period are
specified on a recorder basis. Others are for the properties and data to record.

	parameter

	default

	description

	file

	outputfile.csv

	the file to save the data to

	name

	recorder_#

	the name of the recorder for easy reference later

	description

	
	description that gets put in the header of the output file

	column

	-1

	the column of the recorder in which to place the requested data

	target

	
	the object to extract data from

	field

	
	the field of the target object to capture

	units

	defUnit

	the desired units of the output

	offset

	0

	an offset index for a particular state

	gain

	1.0

	a multiplier on the measurement

	bias

	0.0

	a measurement bias

	precision

	7

	the number of digits of precision to print for string formats

	frequency

	1.0

	set the frequency of recording

	period

	1.0

	set the measurement period

	starttime

	-inf

	set a start time for the recorder

	stoptime

	inf

	set a stop time for the recorder

	autosave

	0

	set the recorder to save every N samples; 0 for off

	reserve

	0

	reserve space for N samples

	period_resolution

	0

	set the minimum resolution for any time period (not usually user specified)

Recorder fields define which property of an object to capture. This includes all properties and calculations involving properties. All functions
and expressions defined in the func section [TODO]Add ref to func section[/TODO] are valid in recorder expressions.

solver

Solvers can be defined through the XML file. There are some default solvers defined but the solver element allows the definition of custom solvers
applied to specific problem types. This allows specification of specific approximations or other configuration options for the solvers to use for
solving various specific problems. Solver properties are shown in the table below.

	parameter

	default

	description

	printlevel

	error(1)

	may be specified with a string or number, “debug”(2), “error”(1), “none”(0)”, “errno” only prints out error messages

	approx

	“none”

	see the table below for details on possible options [TODO]Add ref to the table on solver options[/TODO]

	flags

	
	see the table for details on possible options [TODO]Add ref to table on flags[/TODO]

	tolerance

	1e-8

	the residual tolerance to use

	name

	solver_#

	the name of the solver

	index

	automatic

	the specified index of the solver

	file

	
	log file for the solver

Solvers have a set of options used to define what types of problems they are intended to solve. And another set of intended approximations. This
information gets passed to the models whenever a solve is attempted. A listing of the possible modes is shown in the solver modes table below. In
some cases multiple modes can be combined, in other cases they are mutually exclusive and the second will override the earlier specification. A
number of approximations are also specified mainly targeting approximations to transmission lines. These approximations are suggestions rather
than directives and models are free to ignore them. There are 3 independent approximations that can be used in various combinations and several
descriptions which turn on the simplifications in a convenient form. Most approximations target the acline models, but future approximations can
be added specifically looking at other models.

	mode/approximation

	description

	local

	used for local solutions

	dae

	solver is intended for solving a set of coupled differential algebraic equations

	differential

	solver is intended to solve a set of coupled differential equations

	algebraic

	solver is intended to solve algebraic equations only

	dynamic

	solver is intended for dynamic simulations

	powerflow

	solver is intended for powerflow problems (implies !dynamic and algebraic)

	extended

	instructs the model to use an extended state formulation mainly targetted at state estimation problems

	primary

	opposite of extend

	ac

	solve for both voltage and angle on the buses

	dc

	solve only for the angle on AC buses, assume the voltage is fixed

	r, small_r

	assume the resistance of transmission lines is small

	small_angle

	use the small angle approximation (assume \(sin(\theta)=\theta\))

	coupling

	assume there is no coupling between the \(V\) and \(\theta\) states

	normal

	use full detailed calculations

	simple, simplified

	use the small_r approximation

	decoupled

	use the coupling approximation

	small_angle_decoupled

	use the small angle and decoupled approximations

	small_angle_simplified

	use the small angle and small r approximations

	simplified_decoupled

	use the small r and decoupling approximations

	fast_decoupled

	use all 3 approximations

	linear

	linear

Solvers can also include a number of options that are common across all solvers (though specific solvers may not implement them). Often
specific solvers also include other options specific to that numerical solver.

	mode

	description

	dense, sparse

	set the solver to use a dense matrix solve or a sparse matrix (default)

	parallel, serial

	set the solver to use parallel or serial (default) arrays, this is in the form of openMP array

	constant_Jacobian

	tell the solver to assume the Jacobian is constant

	mask

	tell the solver to use a masking element to shield specific variables from the solution. This functionality is used in some cases of initial condition generation and probably shouldn’t be used externally

import

Import statements are used to add an external file into the simulation. The file can be of a type capable of being read by GridDyn. Import
statements are typically single element statements though they can have subelements if desired. A couple examples are shown in this example.

<import>sep_lib.xml</import>
<import prefix="A1">subnetwork.csv</import>
<import final=true ext="xml">last_elements.odx</import>

The optional attributes/elements are descripted in the table below.

	parameter

	valid values

	description

	prefix

	string

	a string to prefix all object names from the imported file

	final

	“true(1)”
“false(0)”

	if set to true the import is delayed until after all other non-final imports and the local file have been loaded
if set to false or not included the import is processed before any locally defined objects and in the order imports are specified

	file

	string

	the file name, can also be interpreted from the element text

	filetype

	string

	the extension to use for interpreting the import file; if not specified the extension is determined from the file name

	flags

	ignore_step_up_transformers

	the flags option is to add in additional options, it will likely be expanded as needed, currently the only option available is to ignore step up transformers in some formats of model input. As the file readers improve and become more integrated and consistent more options will be available

directory

The directory element allows the user to specify additional search paths for GridDyn to locate any files without an absolute path.

<directory>/home/usr/user1/GridDyn</directory>
<directory>

library

GridDyn file input can include a library of predefined objects. This section is defined through a library element. Any of the components described
above can be included as a library element. These library objects get stored in a separate holding area and are copied when any object uses a ref
fields with a value of the library element name. The ref field can be either an element or an attribute. If type and ref are specified the type
definition takes priority and the library object is cloned to the newly created object, if only ref is specified a new object is cloned directly
from the library object. There can be multiple library sections, they simply get merged. By using import statements libraries can be defined in a
separate file. A simple example using libraries and references is shown below. The code describes 4 objects and generator model, an exciter and a
governor, and a generator that uses the 3 previously defined submodels to make up the dynamic components of the generator.

<library>
 <model name="mod1">
 <type>fourthOrder</type>
 <D>0.040</D>
 <H>5</H>
 <Tdop>8</Tdop>
 <Tqop>1</Tqop>
 <Xd>1.050</Xd>
 <Xdp>0.350</Xdp>
 <Xq>0.850</Xq>
 <Xqp>0.350</Xqp>
 </model>
 <exciter name="ext1">
 <type>type1</type>
 <Aex>0</Aex>
 <Bex>0</Bex>
 <Ka>20</Ka>
 <Ke>1</Ke>
 <Kf>0.040</Kf>
 <Ta>0.200</Ta>
 <Te>0.700</Te>
 <Tf>1</Tf>
 <Urmax>50</Urmax>
 <Urmin>-50</Urmin>
 </exciter>
 <governor name="gov1">
 <type>basic</type>
 <K>16.667</K>
 <T1>0.100</T1>
 <T2>0.150</T2>
 <T3>0.050</T3>
 </governor>
 <generator name="gen1">
 <model ref="mod1"/>
 <exciter ref="ext1"/>
 <governor ref="gov1"/>
 </generator>
</library>

Libraries are only allowed to be defined at the root object level, they are not allowed in any element that is a part of the root element
so they are directly processed by the interpreter.

array

Arrays and the if statement make up the control structures in the XML file. Arrays allow objects and sets of objects to be generated in a loop,
they can even contain other loops. An example file used for building some scalability tests is shown below. This file uses many of the concepts
discussed previously.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to scalability using arrays-->
<griddyn name="test1" version="0.0.1">
<define name="garraySize" value="20"/>
<define name="gcount" value="ceil(garraySize/3)" eval="1" />
<configuration>
<match_type>exact</match_type>
</configuration>
<library>
<generator name="default">
<P>3.8*(((garraySize^2)/(gcount^2))/9)</P>
<mbase>400</mbase>
 <exciter>
 <type>type1</type>
 <vrmin>-50</vrmin>
 <vrmax>50</vrmax>
 </exciter>
 <model/>
<governor/>
</generator>
<load name="addLoad">
	 <Yp>0.5</Yp>
	 <Yq>0.2</Yq>
	 </load>
	 <load name="constLd">
	 <P>0.1</P>
	 <Q>0.02</Q>
	 <Ip>0.1</Ip>
	 <Iq>0.02</Iq>
	 <Yp>0.1</Yp>
	 <Yq>0.02</Yq>
	 </load>
</library>
	<array count="garraySize" loopvariable="#rowindex">
	<array count="garraySize" loopvariable="#colindex">
 <bus name="bus_$#rowindex$_$#colindex$">
	 <load ref="constLd"/>
	 </bus>
	 </array>
	 </array>
	 <!--add in the additional loads -->
	
	 <array start=1 stop="garraySize" loopvariable="#rowindex" interval=2>
	 <array start=1 stop="garraySize" loopvariable="#colindex" interval=2>
 <bus name="bus_$#rowindex$_$#colindex$">
	 <load ref="addLoad"/>
	 </bus>
	 </array>
	 </array>
	 <!--add in the generators -->
	 <array start=1 stop="garraySize" loopvariable="#rowindex" interval=3>
	 <array start=1 stop="garraySize" loopvariable="#colindex" interval=3>
 <bus name="bus_$#rowindex$_$#colindex$">
	 <gen ref="default"/>
	 <bustype>PV</bustype>
	 <voltage>1.01</voltage>
	 </bus>
	 </array>
	 </array>
	 <!--add in the vertical links-->
	 <array stop="garraySize" loopvariable="#rowindex" start="2">
	<array count="garraySize" loopvariable="#colindex">
 <link name="link_$#rowindex-1$_$#colindex$_to_$#rowindex$_$#colindex$">
	 <r>0.001</r>
	 <x>0.07</x>
	 <from>bus_$#rowindex-1$_$#colindex$</from>
	 <to>bus_$#rowindex$_$#colindex$</to>
	 </link>
	 </array>
	 </array>

 <!--add in the horizonal links-->
	 <array count="garraySize" loopvariable="#rowindex">
	<array stop="garraySize" loopvariable="#colindex" start="2">
 <link name="link_$#rowindex$_$#colindex-1$_to_$#rowindex$_$#colindex$">
	 <r>0.001</r>
	 <x>0.07</x>
	 <from>bus_$#rowindex$_$#colindex-1$</from>
	 <to>bus_$#rowindex$_$#colindex$</to>
	 </link>
	 </array>
	 </array>
	 <!--label the swing bus-->
	 <busmodify name="bus_$1+3*floor(garraySize/6)$_$1+3*floor(garraySize/6)$">
	 <bustype>SLK</bustype>
	 <id>10000000</id>
	 <voltage>1.03</voltage>
	 </busmodify>
	
 <basepower>30</basepower>
 <timestart>0</timestart>
 <timestop>60</timestop>
 <timestep>0.02</timestep>
 <solver name="ida">
 <printlevel>1</printlevel>
 </solver>
</griddyn>

Arrays can have several attributes which define how the array is handled.

	attribute

	default

	description

	start

	1

	the index to start the array counter

	stop

	X

	the last index to use, either stop or count must be specified

	count

	X

	the number of loops, either stop or count must be specified

	loopvariable

	#index

	the name of the definitions to store the loop variable

	interval

	1.0

	the interval between each iteration of the loop counter

if

If elements create a conditional inclusion. Most often used for conditional inclusion based on fixed parameters to allow a single file to do a few
different scenarios. However, they can be tied in with random function generators and arrays to generate random distributions of elements. Any element
component along with import and define statements are allowed in an if element.

The if element must have an element or attribute named condition. The condition is a string specifying a value or two values and a comparison operator.
If a single expression is given, the elements in the if statement are evaluated as long as the expression does not result in a 0. Otherwise both sides of
the expression are evaluated and the comparison is checked. If both sides evaluate to strings, a string comparison is done, otherwise a numerical comparison
if both sides result in numerical values. Depending on the file type and reader ‘>’ and ‘<’ may need to be replaced with the XML character codes of > and
<. These codes are interpreted properly. Compound expressions are not yet supported. Eventually the goal will be to support conditions based on object
values instead of values that can be evaluated in the element reader itself, but this capability is not yet allowed.

econ

The econ element describes data related to the costs and values of an object. It will be used for interaction with optimization solvers and the root object
must be an optimization type simulation. While the element works fine, it doesn’t do anything with the data.

position

A position element describes data related to the geophysical (or relative) position of an object. The element is ignored but will be further developed at a later time.

actions

The gridDynSimulation object can execute a number of types of actions. These can be controlled through the API but also through an action queue.
The actions are defined and stored in a queue and executed when the run function is called. If no actions are defined some logic is in place to
do something sensible, typically run a power flow then a dynamic simulation if dynamic components were instantiated. Actions allow a much finer
grained control over this process. These actions can be loaded through the XML file and eventually in a type of script (not enabled yet). Actions
are specified through an action element containing the action string. The string is translated into an action and stored in a queue.

<action>run 23.7</action>

The list of available commands is shown in the table below. For all lines in the table (s) implies string parameter, (d) implies double parameter,
(i) integer parameter, (X)* optional, (s|d|i) string or doulbe or int, and for a given line everything following a # at the beginning of a word
is considered a comment and ignored.

	action string

	description

	ignore XXXXXX

	do nothing

	set parameter(s) value(d)

	set a particular parameter; the parameter can include an object path

	setall objecttype(s) parameter(s) value(d)

	set a parameter on all objects of a particular type

	setsolver mode(s) solver(s|i)

	set the solver to use for a particular mode of operation

	settime newtime(d)

	set the simulation time

	print parameter(s) setstring(s)

	print a parameter (can include path)

	powerflowstep solutionType(s)*

	take a single step of the specified solution type

	eventmode stop(d)* step(d)*

	run in event driven power flow mode until stop with step

	initialize

	run the initialization routine

	dynamic solutionType(s)* stop(d)* step(d)*

	run a dynamic simulation

	dynamicdae stop(d)*

	run a dynamic simulation using DAE solver

	dynamicpart stop(d)* step(d)*

	run a dynamic simulation using the partitioned solver

	dynamicdecoupled stop(d)* step(d)*

	run a dynamic simulation using the decoupled solver

	reset level(i)

	reset the simulation to the specified level

	iterate interval(d)* stop(d)*

	run an iterative power flow with the given interval

	run time(d)*

	run the simulation using the default mode to the given time

	save subject(s) file(s)

	save a particular type of file

	load subject(s) file(s)

	load a particular type of file

	add addstring(s)

	add something to the simulation

	rollback point(s|d)

	rollback to a saved checkpoint (not implemented yet)

	checkpoint name(s)

	save a named checkpoint (not implemented yet)

	contingency ????

	run a contingency analysis (not implemented yet)

	continuation ????

	run a continuation analysis (not implemented yet)

Design Philosophy

GridDyn was formulated as a tool to aid in research in simulator coupling. Its use has expanded but it is primarily a research tool
into grid simulation and power grid related numeric methods, and is designed and constructed to enable that research. It is open source,
released under a BSD license. All included code will have a similarly permissive license. Any connections with software of other licenses
will require separate download and installation. It is intended to be fully cross platform, enabling use on all major operating systems,
all libraries used internally must support the same platforms. However interaction with other simulators, such as for distribution or
communication may impose additional platform restrictions. Optional components may not always abide by the same restrictions. Prior to
release 1.0 very little effort will be expended in backwards compatibility. GridDyn was written making extensive use of C++11 constructs,
and will shortly be making more use of C++14 standard constructs. Specifically allowing any features of the standard supported by GCC 4.9.x versions.
It is expected this will be the minimum version supported until newer compilers are much more widely accessible.

Modularity

GridDyn code makes heavy use of object oriented design and polymorphism and is intended to be modular and replaceable. The design intention
is to allow users to define a new object that meets a given component specification and have that be loaded into the simulation as easily as
any previously existing object, and require no knowledge of the implementation details of any other object in the simulation. Thus allowing
new and more complex models to be added to the system with no disruption to the rest of the system. Models also do not assume the precense
of any other object in the system, though they are allowed to check for the existence first. This is exemplified in the interaction of
generators with its subcomponents. Any combination of Generator Model, exciter, and governor should form a valid simulation even though some
combinations may not make much physical sense or be realistic.

Mathematics

The GridDyn code itself has only limited facilities for numeric solutions to the differential algebraic equations which define a dynamic power
system simulation. Instead it relies on external libraries interacting through a solver interface tailored for each individual solver. The models
are intended to be very flexible in support for an assortment of numeric approximations and solution models, and define the equations necessary
for model evaluation.

Initial development of dynamic simulation capability is done through a coupled differential algebraic solver with variable time stepping; the
primary solver used is IDA from the SUNDIALS package. It can use the dense solver or the KLU sparse solver which is much faster. Recent work
incorporates the use of a fixed time step solution mode, with a partitioned set of solvers separating the algebraic from the differential
components and solving them in alternating fashion. At present this is much less well tested. Initial formulations use CVODE for the differential
equations and KINSOL for the algebraic solution. Kinsol is also used to solve the power flow solution. ARKODE, an ODE solver using Runga-Kutta
methods is also available for solving the ODE portion of the partitioned solution.

In order to provide support for current and future models of grid components a decision was made to distribute the grid connectivity information
and not use a Y-bus matrix as is typical in power system simulation tools. This allows loads and tranmission lines to be modeled using arbitrary
equations. This decision alters the typical equations used to define a power flow solution at buses. Each bus simply sums the real and reactive
power produced or consumed by all connected loads, generators, and links. Those components are free to define the power as an arbitrary function
of bus voltage, angle, and frequency, provided that function is at least piecewise continuous.

Note

Continuous functions work much better, piecewise continuous functions work but don’t really play nicely with the variable timestepping.

Defining the problem in this way comes at a cost of complexity in the complementation and likely a performance hit but allows tremendous
flexibility for incorporating novel loads, generators, and other components into power flow and dynamic simulation solutions. The dependency
information is extracted through the Jacobian funciton call. Currently the solution always assumes the problem is non-linear even if the
approximations used are in fact linear. While GridDyn’s interaction with the solvers comes exclusively through interface objects, there may
be some inherent biases in the interface definition due to primary testing with the SUNDIALS package. These will likely be exposed when
GridDyn is tested with alternative numerical solvers.

Model Definition

GridDyn is intended to be flexible in its model definition allowing details to be defined through a number of common power system formats.
The most flexible definition is through a GridDyn specific XML format. Strictly speaking the most flexible XML cannot be defined by an XML
schema due to the fact that the readers allow element names to describe properties of which the complete set of which cannot be described
due to support for externally defined models. Alternate formulations exist which could be standardized in a schema but no attempt has been
made to do so. The XML formulation includes a variety of programming like concepts to allow construction of complex models quickly, including
arrays and conditionals, as well as limited support for equations and variable definitions. The file ingest library also supports importing
other files through the XML and defining a library of objects that can be referenced and copied elsewhere. The typical use case is expected to
be importing a file of another format that contains a majority of the desired simulation information and only defining the solver information
and any GridDyn specific models and adjustments in the XML. The general idea is to be as flexible and easy to use as possible for a text based
input format, as GridDyn develops support as many other formats as is practically possible. All the file ingest functionality is contained in
a separate library from the model bookkeeping and model evaluation functionality. Other types of input can be added as necessary and some
development is taking place towards a GUI which would interact through REST service commands and JSON objects. Included in GridDyn are
capabilities of searching through objects by name, index number, or userID.

Performance

GridDyn was designed for use in an HPC environment. What that means right now is that GridDyn can interoperate with other simulators in that
environment and some considerations were put in place in the design, but GridDyn on its own does not really take advantage of parallel processing.
As of release 0.5 the transmission power flow and dynamic solve is not itself parallel in any way. Considerable thought has been put into how that
might be accomplished in later versions but it is not presently in place. Initial steps will include adding in optional OpenMP pragmas to take
advantage of the inherent independence of the objects in calculation of the mathematical operations such as residual or Jacobian. OpenMP vector
operations can be enabled in SUNDIALS, though this is only expected to result in small performance gains and only for models over 5000 buses.
Further tests will be done to determine exact performance gains.

Some effort has gone into improving the performance of the power flow solve and only incremental gains are expected at this point using the current
solve methodology. No effort has been expended on the dynamic simulation so some performance improvements can be expected in that area when examined.

The system has no inherent size limitations. Limited only by memory on any given system. Scalability studies have been carried out to solving a million
bus model, It could probably go higher but the practical value of such a single solve is unclear as of yet.

Model Libraries

The aim thus far in GridDyn has been the development of the interfaces. The models available are the result of programmatic needs or the need to ensure
the simulator is capable of dealing with specific kinds of model interactions. As a result the models presently available represent only a small subset
of those defined in power system libraries. More will be available as time goes on, but the idea is not to have a large collection internally but to enable
testing of new models, and to incorporate model definition libraries through the use of other tools and interfaces such as FMI, and possibly others as needed.

Testing

A suite of test cases is available and will continue to grow as more components and systems are thoroughly tested. The nature of the test suite is evolving
along with the code and will continue to do so. It makes use of the BOOST test suite of tools and if built creates 5 executable test programs that test the
various aspects of the system. While we are still a ways from that target 100% test coverage is a goal though likely not realistic in the near future. The
code is regularly compiled on at least 5 different compilers and multiple operating systems and strives for warning free operation.

Test Programs

If enabled 5 test programs are built. These programs execute the unit test suite for testing GridDyn. They are divided into 5 programs. testLibrary runs tests
aimed at testing operation of the various libraries used In GridDyn. The testComponents program executes test cases targeted at the individual model components
of GridDyn. The third, testSystem, runs system level tests and some performance and validation tests on GridDyn. The testSharedLibrary tests using GridDyn as a
shared library. The last, extraTests includes some longer running tests and performance tests. After installation these test programs are placed in the install
directory and can be executed by simply running the executable. Specific tests can be executed with command line parameters.

> ./testComponents --run_test=block_tests
> ./testComponents --run_test=block_tests/block_alg_diff_jac_test
> ./testLibrary -h

Development Notes

GridDyn is very much a work in progress, development is proceeding on a number of different aspects from a number of directions and many components are
in states of partial operation or are awaiting development in other aspects of the code base. The notes in this section attempt to capture the development
status of various Griddyn components and note where active and planned development is taking place.

Interface and Executables

A gridDynServer executable is in development. This program will become the main means of interacting with simulations. The plan will be for it to support
multiple running simulations and allow users to interact through a set of interfaces. Planned interfaces include a RESTful service interface for ethernet
based interaction, which will eventually be the basis of interaction with a GUI, a command line interface, and a direct application interface through
TCP/UDP or MPI.

Also in development is a wrapper around the simulation engine into a Functional Mockup Interface to allow GridDyn to interact with other simulations
through the FMI for co-simulation framework.

Models

The models included in GridDyn are an evolving set. They have been added to address particular research questions or needs or test specific aspects of
GridDyn operation. The next several subsections talk about the state of development in the various components available in GridDyn.

Buses

The bus code is well tested but is constantly evolving to simplify the code or areas of responsibility, or to improve operation, even though the equations
used in the bus evaluation are quite straightforward. The bus itself is one of the more complex objects in GridDyn in order to handle the management of
loads and generators and the associated limits and controls. As well as the associated transition between powerflow and dynamic simulation. Currently
available are an ACbus, a DC bus for association with HVDC transission lines, a trivial bus, and an infinite bus. Some plans are in place for a 3-phase bus
but that has been low on the priority list. The DC bus is not thoroughly tested, particularly in dynamic contexts.

Area

At present areas are primary used as a way to group objects. Ongoing development is taking place to add in area wide controls such as AGC. Some of these
structures are in place but have yet to be tied in with the Area model itself. There is work ongoing to do this and some form will be functional within the
next 3 months. Areas and subareas can be configured through the GridDyn XML format but none of the other available formats such as CDF or PTI currently make
use of the area information available in those formats. This will be added alongside the development of area controls.

Links

The basic AC link has been tested thoroughly in powerflow and dynamic simulations by comparison with standard test cases. Other link models such as DC links,
and an adjustableTransformer model have been tested in power flow simulations, but the dynamics of them are a work in progress. They operate fine in that
context but do not include the control dynamics, at least not at a level that is well-tested.

Relays

The generic relay is one of the more complex objects to setup. Most use cases involve using one the specific relay types as they embody the information for
setting up a relay. There are no known issues with the relays though given their complexity it is likely there are many circumstances when they do not function
appropriately, or cause issues with interaction of the other parts of the system. The basic relay contains tremendous flexibility and it is not recommended that
beginning users attempt to directly instantiate it. You are of course welcome to try but the specification of conditions and actions is somewhat more complex
than most other system properties through the XML. Other relay types are in development as needed by specific usage requirements.

Loads

A number of types of loads are modeled in GridDyn. The basic model is a ZIP model. Extensions include ramps and a variety of other load shapes and others such
as an exponential load and a frequency dependent load. Also included are motor loads, including models of first order, 3rd order and 5th order induction models,
and include mechanisms for modeling motor stalling. The 5th order model has some potential issues during certain conditions that have not been fully debugged.
All work in powerflow and dynamic simulation. Code for loading a GridLab-D distribution system is included in the release but will not function without
corresponding alterations to a GridLab-D instance and operation with Pargrid, neither of which are included in this release, so for all practical purposes it
will revert to a debug mode with a simulated distribution simulation intended for debugging operations. The actual functionality necessary for coupling with a
distribution system will hopefully be released in the near future, though could be made available for partners. There is a composite load model available. This
is a more generic container for containing other load models. This is distinct and more general than the composite load model defined by FERC. Though an
instantiation of that model is planned and will make use of the generic composite model in GridDyn.

Generators

These include governors, exciters, generator models, and power system stabilizers. The variable generator also has mechanisms for including sources which are
data generators, and filters. The combination of which creates a mechanism for feeding weather data to a solar or wind plant and converting that into power. The
generator is specifically formulated to allow any/all/none of the subcomponents to be present and still operate. A default generator model is put into place if
none is specified and a dynamic simulation is required. A third generator which includes a notion of energy storage is in planning stages.

Generator Models

A wide assortment of genModels are included. Most have been debugged and tested. The classical generator model includes a notion of a stabilizer due to inherent
instabilities under fault conditions when attached to an exciter and/or governor. Not that the classical generator model is an appropriate model to use for such
circumstances, but nonetheless a stabilizer was incorporated to make the model stable. The incorporation of saturation into the models is not complete. The models
accept the parameters but are not included in the calculation. GENROU and GENSAL models are being developed but are not complete as of release 0.5.

Exciters

Available exciters include simple, IEEE type1, IEEE type2, DC1A, and DC2A. The DC2A model has some undiagnosed issue in particular situations and is not recommended
for use at present.

Governors

The basic governor and TGOV1 models are operational, others are not completed and further work is being delayed until a more general control system model is in
place which will greatly simplify governor construction as well as other control systems. The deadband is not working in TGOV1.

Power System Stabilizers

The current PSS code is a placeholder for future work. No PSS model is currently available, though some initial design work has taken place. The work has been
delayed until the control system code is operational.

Control Blocks

Control blocks are a building block for other models and a number of them are used in other models throughout Griddyn. Development on the generic transfer function
block is not finished but the others are working and tested. These will form the building blocks of a set of general control system modules which could be used to
build other types of more complex models.

Others

Other components in Griddyn include sources which are operational but not well tested in practice, schedulers which are used to control generator
scheduling, and other types of controllers for AGC, dispatch, and other sorts of controls. Most of these are in various states of development and not
well tested.

Events

Griddyn supports a notion of events which can be scheduled in a simulation and can basically alter any property of the system with the exception of some
models prohibiting changing of certain properties after simulation has begun, in this case the event will still be valid, it just won’t do anything.
Support for more complex events involving multiple devices in a more straightforward fashion is planned.

Recorders

Support for extracting any calculated field or property from an object is supported through grabber objects. This can be done directly via the state
arrays or from the objects themselves. The files can be saved periodically or at the end of the simulation in a binary format or in CSV. Readers for
the binary format are available in C++, Matlab, and Python. If a large amount of data is captured frequently for dynamic simulations there is currently
a performance hit. There are ideas for mitigating this that will be addressed when the performance of the dynamic simulation is studied and addressed.

Simulation

Some of the mechanics and interfacing of the planned optimization extension are in place but nothing actually works yet, so don’t use it.

FMU Interaction

This works in some cases but is a little more complex to set up than the rest of the code as it is under significant active development, therefore it
is not recommended for use at this time.

File Input

GridDyn is capable of reading XML and Json files defining the GridDyn data directly and these formats can take advantage of all GridDyn capabilities.
Json is not as well tested and was targeted mainly for the server interface, but it should work as a file format just fine. A fairly flexible CSV input
file reader is also available for inputing larger datasets in a more workable format. CDF files are read though the area and a few other properties not
important for powerflow are not loaded into GridDyn yet. Most of the common elements in raw and pti ﬁles are also loaded properly. Some of the more exotic
elements such as multiterminal DC lines and 3-way transformers are not yet, mainly since we have no examples of such things in example files. EPC files
for PSLF are the same though used less extensively than raw files. Matlab files from Matpower and PSAT can also be loaded. Not all dynamic models from PSAT
are available, for DYR files models that match those available are loaded and some others are translated to available models. The library of models in
GridDyn is much smaller than those available in commercial tools. Support for other formats is added as needed by projects.

CMake Options

The CMake build scripts for GridDyn support a number of configuration options that can be set via either the cmake-gui or the command
line cmake command using -D<VAR>=<VALUE> arguments. The CMake manual available at https://cmake.org/cmake/help/latest/manual/cmake.1.html

describes use of -D and other arguments in more detail.

	BOOST_INSTALL_PATH

	Sets the root location of Boost. Can be used if Boost is not found in the system directories or if a different version is desired.

	BUILD_SHARED_LIBS

	Turns on building of the GridDyn C and C++ shared libraries (BUILD_GRIDDYN_C_SHARED_LIBRARY and BUILD_GRIDDYN_CXX_SHARED_LIBRARY options).

	BUILD_TESTING

	Enable the test executables to be built.

	ENABLE_GRIDDYN_LOGGING

	Enables all normal, debug, and trace logging in GridDyn.

	ENABLE_GRIDDYN_DEBUG_LOGGING

	Unselecting disables all DEBUG and TRACE log messages from getting compiled.

	ENABLE_GRIDDYN_TRACE_LOGGING

	Unselecting disables all TRACE log messages from getting compiled.

	DOXYGEN_OUTPUT_DIR

	Location for the generated doxygen documentation.

	ENABLE_64BIT_INDEXING

	Enables support inside GridDyn for more than 2:sup:32-2 states or objects.

	ENABLE_FMI

	Enable support for FMI objects.

	ENABLE_FMI_EXPORT

	Enable construction of a binary FMI shared library for GridDyn.

	ENABLE_FSKIT

	Enable to build additional libraries and support for integration into FSKIT and PARGRID for tool coupling.

	ENABLE_HELICS_EXECUTABLE

	Enable the HELICS executable to be built for tool coupling using HELICS for communication.

	ENABLE_KLU

	Option to disable KLU (not recommended [slow]; prefer to turn on AUTOBUILD_KLU)

	ENABLE_MULTITHREADING

	Disable multithreading in GridDyn libraries.

	ENABLE_MPI

	Enable MPI networking library.

	ENABLE_OPENMP

	Enable OpenMP support.

	ENABLE_OPENMP_GRIDDYN

	Enables OpenMP use internal to GridDyn.

	ENABLE_OPENMP_SUNDIALS

	Enables the SUNDIALS NVector OpenMP implementation.

	ENABLE_YAML

	Enables YAML file support in GridDyn.

	ENABLE_EXTRA_MODELS

	Compile and load extraModels.

	ENABLE_EXTRA_SOLVERS

	Compile and load extraSolvers (including braid, paradae).

	ENABLE_NETWORKING_LIBRARY

	Enable network based communication components.

	ENABLE_TCP

	Enable TCP connection library. Depends on Networking.

	ENABLE_DIME

	Enable connection with DIME. Depends on Networking.

	ENABLE_ZMQ

	Enable ZMQ connection library. Depends on Networking.

	ENABLE_PLUGINS

	Build libpluginLibrary

	ENABLE_OPTIMIZATION_LIBRARY

	Enable optimization libraries.

	ENABLE_CODE_COVERAGE_TEST

	Build a target for testing code coverage.

	ENABLE_GRIDDYN_DOXYGEN

	Generate Doxygen doc target.

	ENABLE_CLANG_TOOLS

	If Clang is found, enable some custom targets for Clang formatting and tidy.

	ENABLE_PACKAGE_BUILD

	Add projects for making packages and installers for GridDyn.

	ENABLE_EXTRA_COMPILER_WARNINGS

	Enable more compiler warnings (full list in config/cmake/compiler_flags.cmake)

	ENABLE_EXPERIMENTAL_TEST_CASES

	Enable some experimental test cases in the test suite.

	FORCE_DEPENDENCY_REBUILD

	Rebuild third party dependencies, even if they’re already installed.

	LOAD_ARKODE

	Build in support for ARKODE for solving differential equations. Not used at present but will be in the near future.

	LOAD_CVODE

	Build in support for CVODE for solving differential equations. Not used at present but will be in the near future.

	SuiteSparse_INSTALL_PATH

	The location of the KLU installation if it was not found in the system directories.

	SUNDIALS_INSTALL_PATH

	The location of the SUNDIALS installation if it wasn’t found (or AUTOBUILD_SUNDIALS is disabled).

Settable Object Properties

The tables here describe the parameters for each of the models present in GridDyn as of Version 0.5. The tables are automatically
generated via scripts so there are a few bugs and some missing information as of yet. Each table has 4 columns. The first column
specifies the string or strings that can be used to set this property, multiple strings that do the same thing are separated by a
comma. The second columns defines the type of parameter, number implies a numeric value, string implies a string field, and flag is
a flag or boolean variable which can be set to true with “true”, or any number greater than 0.1 (typically 1), and set to false for
any number less than 0.1 or “false”. The third column lists the default value if applicable and the fourth column is a description.
In many cases the default units will be described in [] at the beginning of the description, the default units are the units of the
default and the unit that is assumed if no units are given to the set command. All the set functions cascade to parent classes which
are identified in the table captions.

Style Guide

Naming Styles

Classes

Camel case names starting with a Capital letter

e.g. GridDynClass

Class Methods

Camel case names starting with a lower case letter

e.g. gridDynMethod

Class Static Members

Camel case names starting with lower case and preceded by a s_

e.g. s_staticMember

Class Members

Camel case names starting with lower case and preceded by a m_

e.g. m_classMember

Model Parameters

A subset of class members specifically referring to settable model parameters.

Engineering reference model parameters are preceded by mp_, K is used for gains, T for time constants, R for resistances, X for impedances, and others are used as appropriate, typically using a capital letter first followed by a number of other lower case letters.

e.g. mp_K1, mp_T3, mp_Rs

Pointers

Camel case starting with a lower case and preceded by p_

e.g. p_classMemberPointer

Function Names

Camel case starting with lower case

e.g. functionName

Function Arguments

Camel case starting with lower case

e.g. functionName(type functionArgument1, type2 functionArgument2)

Enumeration Names

Lower case separated by _ and followed by _t

e.g. enumeration_name_t

Enumeration Fields

Lower case separated by _

e.g. enumeration_field

Global Constants

Capital letters preceded by a lower case k

e.g. kCONSTANT

Macros

Capital letters with words separated by _

e.g. MY_MACRO

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 GridDyn

 		
 Getting Started

 		
 Prerequisites

 		
 Installation Notes

 		
 Mac

 		
 Linux

 		
 Windows

 		
 Running GridDyn

 		
 GridDyn Components

 		
 Buses

 		
 Areas

 		
 Links

 		
 Relays

 		
 XML Input

 		
 Initial Example

 		
 Parameter Specification

 		
 Functions and Mathematical Operations

 		
 Zero argument mathematical expressions

 		
 One argument mathematical expressions

 		
 Two argument mathematical expressions

 		
 Component Description

 		
 Object Identification

 		
 Special Elements

 		
 translate

 		
 define

 		
 custom

 		
 configuration

 		
 event

 		
 recorder

 		
 solver

 		
 import

 		
 directory

 		
 library

 		
 array

 		
 if

 		
 econ

 		
 position

 		
 actions

 		
 Design Philosophy

 		
 Modularity

 		
 Mathematics

 		
 Model Definition

 		
 Performance

 		
 Model Libraries

 		
 Testing

 		
 Test Programs

 		
 Development Notes

 		
 Interface and Executables

 		
 Models

 		
 Buses

 		
 Area

 		
 Links

 		
 Relays

 		
 Loads

 		
 Generator Models

 		
 Exciters

 		
 Governors

 		
 Power System Stabilizers

 		
 Control Blocks

 		
 Others

 		
 Events

 		
 Recorders

 		
 Simulation

 		
 FMU Interaction

 		
 File Input

 		
 CMake Options

 		
 Settable Object Properties

 		
 Style Guide

 		
 Naming Styles

 		
 Classes

 		
 Class Methods

 		
 Class Static Members

 		
 Class Members

 		
 Function Names

 		
 Function Arguments

 		
 Enumeration Names

 		
 Enumeration Fields

 		
 Global Constants

 		
 Macros

_static/up.png

_static/up-pressed.png

