
GridDyn

Sep 27, 2019

Basics

1 Getting Started 3
1.1 Prerequisites . 3
1.2 Installation Notes . 3
1.3 Running GridDyn . 4

2 GridDyn Components 7
2.1 Buses . 7
2.2 Areas . 8
2.3 Links . 8
2.4 Relays . 8

3 XML Input 9
3.1 Initial Example . 9
3.2 Parameter Specification . 12
3.3 Functions and Mathematical Operations . 12
3.4 Component Description . 14
3.5 Object Identification . 15
3.6 Special Elements . 16

4 Design Philosophy 27
4.1 Modularity . 27
4.2 Mathematics . 27
4.3 Model Definition . 28
4.4 Performance . 28
4.5 Model Libraries . 29
4.6 Testing . 29
4.7 Test Programs . 29

5 Development Notes 31
5.1 Interface and Executables . 31
5.2 Models . 31
5.3 Others . 33
5.4 File Input . 34

6 CMake Options 35

7 Settable Object Properties 37

i

8 Style Guide 39
8.1 Naming Styles . 39

9 Indices and tables 41

ii

GridDyn

GridDyn is a power system simulator developed at Lawrence Livermore National Laboratory. The name is a concate-
nation of Grid Dynamics, and as such usually pronounced as “Grid Dine”. It was create dto meet a research need
for exploring coupling between transmission, distribution, and communications system simulations. While good open
source tools existed on the distribution side, the open source tools on the transmission side were limited in usability
either in the language or platform or simulation capability, and the commercial tools while quite capable simply did
not allow the access to the internals required to conduct the research. Thus the decision was made to design a platform
that met the needs of the research project.

Building off of prior efforts in grid simulation, GridDyn was designed to meet the current and future needs of the
various grid related research and computational efforts. It is written in C++ making use of recent improvements in
the C++ standards. It is intended to be cross platform with regard to operating system and machine scale. The design
goals were for the software to be easy to couple with other simulations, and be easy to modify and extend. It is very
much still in development and as such, the interfaces and code is likely to change, in some cases significantly as more
experience and testing is done. It is our expectation that the performance, reliability, capabilities, and flexibility will
continue to improve as projects making use of the code continue and new ones develop. We expect there are still many
issues so any bug reports or fixes are welcome. And hopefully even in its current state and as the software improves
the broader power systems research community will find it useful.

Basics 1

GridDyn

2 Basics

CHAPTER 1

Getting Started

1.1 Prerequisites

GridDyn is written in C++ and makes use of a few external libraries not included in the released source code. External
software packages needing installation prior to compilation of GridDyn include:

1. A modern C/C++ compiler for building

2. The cmake command for building

3. The git command for getting the code

4. Boost 1.61 or greater

5. Doxygen for building in-source documentation

6. KLU in SuiteSparse - on Linux the SuiteSparse package typically has KLU, on macOS the Homebrew suite-
sparse package can be used

Currently supported compilers are:

• Visual Studio 2015

• GCC 4.9.3 or higher

• Clang 3.5 or higher (OpenMP must be off to use 3.4)

• Intel 16.0 (not well tested as of yet)

See CMake Options for a list of CMake configuration options to turn on/off different features.

1.2 Installation Notes

1.2.1 Mac

For building on macOS, use Homebrew and make sure git, CMake, suite-sparse, Boost, and OpenMP are installed.

3

GridDyn

1.2.2 Linux

Depending on the distribution, Boost or an updated version of it may need to be installed (the package in the pack-
age manager may be significantly outdated). SuiteSparse/KLU may need to be installed as well. Typically CMake
is used to generate Makefiles, but it can also be used to generate Eclipse projects. BOOST_INSTALL_PATH and
SuiteSparse_INSTALL_PATH may need to be user specified if they are not in the system directories. This can
be done with the cmake-gui or the command line cmake. Then running make will compile the program. Running
make install will copy the executables and libraries to the install directory.

1.2.3 Windows

GridDyn has been built with Visual Studio 2015 and MSYS2. The MSYS2 build is like building on Linux, and works
fine with GCC, though the current Clang version on MSYS2 has library incompatibilities with some of the Boost
libraries due to changes in GCC. I don’t fully follow what the exact issue is but Clang won’t work on MSYS2 to
compile GridDyn unless SUNDIALS, Boost, and KLU are compiled with the same compiler, I suspect the same issue
is also present in some other Linux platforms that use GCC 5.0 or greater as the default compiler. The SuiteSparse
version available through pacman on MSYS2 seems to work fine.

For compilation with Visual Studio, Boost will need to be built with the same version as is used to compile GridDyn.
Otherwise, follow the same instructions.

1.3 Running GridDyn

The main executable for GridDyn is built as gridDynMain and is intended to load and run a single simulation. The
executables testSystem, testComponents, testLibrary, testSharedLibrary, and extraTests are test programs for the unit
testing of GridDyn. A server mode for interactive sessions is a work in progress, but is not operational at the time of
this release.

> ./gridDynMain --version

will display the version information.

> ./gridDynMain --h

will display available command line options.

Typical usage is:

> ./gridDynMain [options] inputFile [options]

The primary input file can be specified with the flag –input or a single flagless argument. Additional input files should
be specified using -i or –import flags.

Command line only options:

--help Print the help message

--config-file arg Specify a config file to use

--config-file-output arg File to store current config options

--mpicount Setup for an MPI run, prints out a string listing the number of MPI tasks that are
required to execute the specified scenario, then halts execution

--helics Setup for a HELICS run for a coupled co-simulation

--version Print version string

4 Chapter 1. Getting Started

GridDyn

Configuration options:

-o, --powerflow-output filename File output for the powerflow solution. Extension specifies a type
(.csv, .xml, .dat, .bin, .txt), unrecognized extensions default to the same format as
.txt

-P, --param arg Override simulation file parameters, -param ParamName=<val>

-D, --dir directory Add search directory for input files

-i, --import filename Add import files loaded after the main input file

--powerflow-only Set the solver to stop after the power flow solution

--state-output filename File for saving states, corresponds to –save-state-period

--save-state-period arg Save state every N ms, -1 for saving only at the end

--log-file filename Log file output

-q, --quiet Set verbosity to zero and printing to none

--jac-output arg Powerflow Jacobian file output

--v, --verbose arg Specify verbosity output, 3=verbose, 2=normal, 1=summary, 0=none

-f, --flags arg Specify flags to feed to the solver, e.g. –flags=flag1,flag2,flag3 no spaces between
flags if multiple flags are specified or enclose in quotes

-w, --warn arg Specify warning level output for input file processing, 2=all, 1=important,
0=none

--auto-capture filename Automatically capture a set of parameters from a dynamic simulation to the
specified file format determined by extension. Either .csv or .txt will record the
output in csv format, all others will record in the binary format. The filename
must be specified with –auto-capture-period if used.

--auto-capture-period arg Specifies the automatic capture period in seconds. If specified without a
corresponding –auto-capture file, a file named auto_capture.bin is created.

--auto-capture-field arg Specify the fields ot be captured through the auto capture. Defaults to auto.
Can be a comma or semicolon separated list, no spaces unless enclosed in quotes.

The configuration routine will look for and load a file named gridDynConfig.ini if it is available. It will also load any
command line specified config file. The order of precedence is command line, user specified config file, then system
config file (if available).

1.3. Running GridDyn 5

GridDyn

6 Chapter 1. Getting Started

CHAPTER 2

GridDyn Components

Components in GridDyn are divided into three categories: primary, secondary, and submodel. Primary components
include buses, links, relays, and areas and define the basic building blocks for power grid simulation. Secondary
components are those which tie into busses and consume or produce real and reactive power. The two component
types in the secondary category are loads and generators. Submodels are any other component in the system and can
form the building blocks of other components. A majority of the differential equations in the dynamic simulations
are found in submodels. Submodels include things such as exciters, governors, generator models, control systems,
sources, as well as several others. There are a few other types of objects in GridDyn, but they generally are used for
specific purposes and do not take part in the equations unless interfaced through another object. The component types
currently available in GridDyn are detailed in another section.

The Development Notes section has information on the current development status of various components.

2.1 Buses

Buses form the nodes of a power system. They act as containers for secondary objects and attach to links. The default
bus type is an AC bus which in typical operation would have 2 states (voltage and angle). 4 types of bus operation are
available, PQ, PV, slack, and fixed angle. The practical value of fixed angle buses is unknown but was included for
mathematical completeness and describes a bus whose angle and reactive power are known.

The residual equation used in the bus model take one of two forms

𝑓𝑣(𝑋) =

𝑔𝑒𝑛𝑠∑︁
𝑖=0

𝑄𝑔𝑒𝑛𝑖(𝑉, 𝜃, 𝑓) +

𝑙𝑜𝑎𝑑𝑠∑︁
𝑖=0

𝑄𝑙𝑜𝑎𝑑𝑖(𝑉, 𝜃, 𝑓) +

𝑙𝑖𝑛𝑒𝑠∑︁
𝑖=0

𝑄𝑙𝑖𝑛𝑒𝑖(𝑉, 𝜃, 𝑓)

for PQ and afix type buses and

𝑓𝑣(𝑋) = 𝑉 − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡

for PV and SLK type buses. The equations for 𝜃 are very similar

𝑓𝜃(𝑋) =

𝑔𝑒𝑛𝑠∑︁
𝑖=0

𝑃𝑔𝑒𝑛𝑖(𝑉, 𝜃, 𝑓) +

𝑙𝑜𝑎𝑑𝑠∑︁
𝑖=0

𝑃𝑙𝑜𝑎𝑑𝑖(𝑉, 𝜃, 𝑓) +

𝑙𝑖𝑛𝑒𝑠∑︁
𝑖=0

𝑃𝑙𝑖𝑛𝑒𝑖(𝑉, 𝜃, 𝑓)

7

GridDyn

for PQ and PV type buses and

𝑓𝜃(𝑋) = 𝜃 − 𝜃𝑡𝑎𝑟𝑔𝑒𝑡

for fixed angle and SLK type buses.

The frequency can be either extracted from an active generator attached to the bus or computed as a filtered derivative
of the angle. If it is computed the bus has an additional state as part of the dynamic calculations.

The bus model implemented in GridDyn also includes some ability to merge buses together to operate in node-breaker
type configurations. At present this is not well tested.

2.2 Areas

Areas define regions on the simulated grid. An area can contain other areas, buses, links, and relays. It principally acts
as a container for the other objects, though will eventually include controls such as AGC and other wide area controls.
The simulation object itself is a specialization of an area.

2.3 Links

In the most general form links connect buses together. As a primary object it can contain other objects, including state
information. The basic formulation is that of a standard AC transmission line model connecting two buses together.
The code includes a number of possible approximations.

2.4 Relays

Relays are perhaps the most interesting and unusual primary object included in GridDyn. The basic concept is that
relays can take in information from one object and act upon another. They add protection and control systems into the
simulation environment. They exist as primary objects since they can stand to operate on their own at the same level
as buses and areas. They may contain states, other objects, submodels, etc. They also act as gateways into communi-
cation simulations, functioning as measurement units and control relays. And through relays a whole host of control
and protection schemes can be implemented in simulation alongside normal power flow and dynamic simulations.
Examples of relays include fuses, breakers, differential relays, distance relays, and control relays, among others.

8 Chapter 2. GridDyn Components

CHAPTER 3

XML Input

The following section contains a description of the XML input file format and how to construct and specify an input
file in the GridDyn XML format. The XML format is intended to be used solely in GridDyn to enable full access to
all the capabilities and models that may or may not be defined in other formats. All the actual interpreters have been
designed to use an element tree structure. And as such the same reader code is used for the XML interpreter and for
a JSON interpreter, though there is some variance in the definitions of elements and attributes in those two contexts
meaning Json objects are somewhat more restricted in format. In the documentation, most of the examples will be in
XML, but a few will be in JSON for completeness.

3.1 Initial Example

A simple input case is as follows:

<?xml version="1.0" encoding="utf-8"?>
<GridDyn name="2bus_test" version="1">

<bus name="bus1">
<type>SLK</type>
<angle>0</angle>
<voltage>1.05</voltage>
<generator name="gen1">
</generator>
<load name="load1">

<P>1.05</P>
<Q>0.31</Q>

</load>
</bus>

<bus name="bus2">
<load name="load2">

<P>0.45</P>
<Q>0.2</Q>

</load>
(continues on next page)

9

GridDyn

(continued from previous page)

</bus>
<link from="bus1" name="bus1_to_bus2" to="bus2">

0.127
<r>0.0839</r>
<x>0.51833</x>

</link>

<flags>powerflow_only</flags>
</GridDyn>

This small XML file defines a two bus system. There are 5 sections to this model description. The first line describes
the standard XML header information and is not used by GridDyn. The second line defines the simulation element
and the name of the simulation. In general properties can be described in either an element or as a property. There
are certain aspects of parameters which can only be controlled in the element form, but for simple parameters either
works fine. Capitalization of properties also does not matter. All object properties in GridDyn are represented by
lower case strings, the XML reader converts all property names to lower case strings before input to GridDyn so
capitalization doesn’t matter in the XML input. The property values themselves preserve capitalization and it is on a
per property basis whether capitalization matters. For naming capitalization is preserved such that “object1” is distinct
from “Object1”. For this XML file the simulation is given the name 2bus_test. The version is for record keeping only
and has no relevance to the simulation.

The second block defines a bus object with a name of bus1. The bus is a slack bus indicated by
<bustype>SLK</bustype>. Other options for this parameter include PQ, PV, SLK, and afix. The angle and volt-
age are specified. A generator object is included. The element generator is recognized as a component and a new
generator object is created with a name of gen1. Finally a load is created with a name of load1 and a fixed real power
of 1.05 and a reactive power of 0.31.

The second bus is defined in a similar way, except it does not define a bustype which means it defaults to a PQ bus.
The link is defined by:

<link from="bus1" name="bus1_to_bus2" to="bus2">
0.127
<r>0.0839</r>
<x>0.51833</x>

</link>

The properties b, r, and x are defined in the XML as elements. The to and from fields are specified using the names of
the buses. These properties must be specified for the lines or the system will spit out a warning.

Finally, the last two lines specify that the simulation should stop after a power flow.

To add in dynamic modeling a few additional pieces of XML can be added. For our example, the powerflow_only flag
at the bottom can be removed, and the following lines can be added to the block for gen1:

<generator name="gen1">
<dynmodel>typical</dynmodel>
<pmax>4</pmax>

</generator>

This defines the generator to have a typical dynamic model, the meaning of which will be detailed in the section on
model parameters for specific models [TODO]Add link to section[/TODO]. It also specifies a pmax value of 4 per
unit.

Next, an event can be added to the load attached to bus2 to change a parameter with the code shown below:

<bus name="bus2">
<load name="load2">

(continues on next page)

10 Chapter 3. XML Input

GridDyn

(continued from previous page)

<P>0.45</P>
<Q>0.2</Q>
<event>@1|p=1.1</event>

</load>
</bus>

The line <event>@1|p=1.1</event> defines an event such that at time 1.0 the p field of the load is set to 1.1, from
the initial value of 0.45. More details will be explained in the section on event specification [TODO]Add link to
section[/TODO].

Finally, a block with a stop time and recorder can be added before the closing GridDyn tag:

<stoptime>10</stoptime>
<recorder period=0.5 field="auto">

<file>twobusdynout.csv</file>
</recorder>

This sets the simulation to run until a stoptime of 10 seconds. The recorder xml element defines a recorder to capture
a set of automatic fields at a period of 0.05 seconds, and capture it to the file twobusdynout.csv upon completion
of the scenario. More dtails on recorder specification are available later in this document [TODO]Add link to sec-
tion[/TODO].

The final listing after these changes is:

<?xml version="1.0" encoding="utf-8"?>
<GridDyn name="2bus_test" version="1">

<bus name="bus1">
<type>SLK</type>
<angle>0</angle>
<voltage>1.05</voltage>
<generator name="gen1">

<dynmodel>typical</dynmodel>
<pmax>4</pmax>

</generator>
<load name="load1">

<P>1.05</P>
<Q>0.31</Q>

</load>
</bus>

<bus name="bus2">
<load name="load2">

<P>0.45</P>
<Q>0.2</Q>
<event>@1|p=1.1</event>

</load>
</bus>
<link from="bus1" name="bus1_to_bus2" to="bus2">

0.127
<r>0.0839</r>
<x>0.51833</x>

</link>

<stoptime>10</stoptime>
<recorder period=0.5 field="auto">

<file>twobusdynout.csv</file>

(continues on next page)

3.1. Initial Example 11

GridDyn

(continued from previous page)

</recorder>

</GridDyn>

3.2 Parameter Specification

Simple parameters can be specified via elements or as attributes. Default units are in seconds for all times and time
constants unless individual models assume differently. Power and impedance specifications are typically in PU values.
Exceptions include basepower and basevoltage specifications which are in MW and KV respectively. The default units
on any rates are in units per second. However, individual models are free to deviate from this standard as makes sense
for them so check with the individual model type specification for details. Parameters in the XML can be specified in
a number of different forms that are useful in different contexts. Below is an example showing the various methods.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to test parameter setting methods-->
<GridDyn name="input_tests" version="0.0.1">
<bus name="bus1">

<load>
<param name="P" value=0.4></param>
<param field="q">0.3</param>
<param field="ip" units="MW">55</param>
<param>yq=0.11</param>
<param name="iq(MW)" value=32/>
<yp>0.5</yp>

</load>

<load yq=0.74 >
<p units="puMW"> 0.31</p>
<param>q(MW)=14.8</param>
<param name="yp" unit="MW" value=127/>

</load>
</bus>
</GridDyn>

The main variants involve varying how the units are placed. Units can be placed as an attribute named unit or units on
the parameters either in a param element or and element named after the model parameter. They can also be placed
in parenthesis at the end of the parameter name when the parameter name is a string contained in the elemental form.
Values can be places in a value element, as the content of an element, or following an equal sign when defined as a
string like <param>yq=0.11</param>. Parameters assuming the default units are allowed to be placed as attributes
of the object.

3.3 Functions and Mathematical Operations

GridDyn XML input allows mathematical operators and expressions in any parameter specification, including complex
expressions. Supported functions are shown in the tables that follow. In addition, most operators are supported
including +, -, *, /, ^, and %. Operator precedence is respected as are parenthesis. String operations are not supported
but the definition system has features that support some use cases for string operations.

12 Chapter 3. XML Input

GridDyn

3.3.1 Zero argument mathematical expressions

function details
inf() results in a large number between 0 and 1
nan() uses nan(“0”)
pi() pi
rand() produces a uniform random number between 0 and 1
randn() produces a normal random number with mean 0 and standard deviation of 1.0
randexp() produces a random number from an exponential distribution with a mean of

1.0
randlogn() produces a random number from a log normal distribution

3.3.2 One argument mathematical expressions

function details
sin(x) sine of x
cos(x) cosine of x
tan(x) tangent of x
sinh(x) hyperbolic sine of x
cosh(x) hyperbolic cosine of x
tanh(x) hyperbolic tangent of x
abs(x) absolute value of x
sign(x) return 1.0 if x>0 and -1.0 if x<0 and 0 if x==0
asin(x) arcsin of x
acos(x) arccosine of x
atan(x) arctangent of x
sqrt(x) the square root of x
cbrt(x) the cube root of x
log(x) the natural logarithm of x log(exp(x))=x
exp(x) the exponential function 𝑒𝑥

log10(x) the base 10 logarithm of x
log2(x) the base 2 logarithm of x
exp2(x) evaluates 2𝑥

ceil(x) the smallest integer value such that ceil(x)>=x
floor(x) the largest integer value such that floor(x)<=x
round(x) the nearest integer value to x
trunc(x) the integer portion of x
none(x) return x
dec(x) the decimal portion of x trunc(x)+dec(x)=x
randexp(x) an exponential random variable with a mean of x

3.3. Functions and Mathematical Operations 13

GridDyn

3.3.3 Two argument mathematical expressions

function details
atan2(x,y) the 4 quadrant arctangent function
pow(x,y) evaluates 𝑥𝑦

plus(x,y) evaluates x+y
add(x,y) evaluates x+y
minus(x,y) evaluates x-y
subtract(x,y) evaluates x-y
mult(x,y) evaluates x*y
product(x,y) evaluates x*y
div(x,y) evaluates x/y
max(x,y) returns the greater of x or y
min(x,y) returns the lesser of x or y
mod(x,y) return the modulus of x and y e.g. mod(5,3)=2
hypot(x,y) evaluates 𝑠𝑞𝑟𝑡𝑥2 + 𝑦2

rand(x,y) return a random number between x and y
randn(x,y) returns a random number from a normal distribution with mean x and variance

y
randexp(x,y) returns a random number from an exponential distribution with mean x and

variance y
randlogn(x,y) returns a random number from a log normal distribution with mean x and vari-

ance y
randint(x,y) returns a uniformly distributed random integer between x and y inclusive of x

and y

3.4 Component Description

Components are defined in elements matching the component name. For example

<exciter name="ext1">
<type>type1</type>
<Aex>0</Aex>
<Bex>0</Bex>
<Ka>20</Ka>
<Ke>1</Ke>
<Kf>0.040</Kf>
<Ta>0.200</Ta>
<Te>0.700</Te>
<Tf>1</Tf>
<Urmax>50</Urmax>
<Urmin>-50</Urmin>

</exciter>

describes an exciter component as part of a generator. The name attribute or element is common for all objects. A
description can also be defined for all objects which is basically a string that can be added to any object. The type
property is a keyword used to describe the detailed type of the component. In the above example the specific type
of the component is type1. GridDyn uses polymorphic objects for each of the components. The type defined in the
XML file for each component defines the specific object to instantiate. If type is not specified the default type of the
component is used.

Predefined components include:

14 Chapter 3. XML Input

GridDyn

area defines a region of the grid

bus the basic node of the system

link the basic object connecting buses together

relay primary object allowing control and triggers for other objects

sensor a form of a relay specifically targeted at sensing different parameters and allowing some direct signal process-
ing on measurements before output

load the basic consumer of energy

generator the basic producer of electricity

genmodel the dynamic model of an electrical generator

governor a generator governor

exciter an exciter for a generator

pss a power system stabilizer*

controlblock a basic control block

source a signal generator in GridDyn

simulation a simulation object

agc describes an automatic generation control*

reserveddispatcher describes a reserve dispatcher*

scheduler a scheduling controller*

• these objects are in development and do not work consistently

Several components are also defined that map onto the more general components, in some cases these define spe-
cific types, in others they are simply maps. Examples include fuse=>relay, breaker=>relay, transformer=>line,
block=>controlblock, control=>relay, and tie=>line. Custom definitions can also be defined if desired through a
translate element.

3.5 Object Identification

There are many instances where it is necessary to identify an object for purposes of creating links or to extract a
property from another. Internally there is a hierarchy of objects starting with the root simulation object. This allows a
path like specification of the objects. There are 2 different notations for describing an object path, one based on colons,
the other more similar to the URI specification for WEB like services, and both allow properties to be specified in a
similar fashion. Objects can be referred to by 4 distinct patterns. The first is by the name of the object. The name
should be unique within any given parent object. The second uses an object component name and index number, for
example bus#0 would refer to the bus in index location 0; using bus!0 will also work the same as bus#0 but can be
used in settings where the ‘#’ is not allowed. All indices are 0 based. The fourth makes use of the user id of an object,
to use this objects would be identified by load$2 to locate the load with userID of 2.

When searching for an object the system starts in the current directory for the search. If it is not found it traverses to
the root object and starts the search from there.

An example of a path specified with the ‘:’ notation is area45::bus#6::load#0:p. The single colon marks that the final
string represents a property. The same object in the URI notation would be area45/bus#6/load#0?p.

In some cases mixed notation might work but it is not recommended. The property indication can be left off when
referencing an entire object. Starting the object identification string with an ‘@’ or a beginning ‘/’ implies searching
starting in the root object, otherwise the search starts at whatever the current object of interest is.

3.5. Object Identification 15

GridDyn

3.6 Special Elements

In addition to the components elements, several element names have special purposes.

3.6.1 translate

The translate element is used to create a custom object definition.

<translate name="special" component="exciter" type="type1"/>

Putting this command in the XML file will allow objects using “special” as the element name instead of specifying
“exciter” in the element name and a specific type. Translations, unlike definitions, are global and are only allowed in
the root element of an XML file. IF you wish to specify a default type for a component or other defined component
translation then the name or component can be left out.

3.6.2 define

The GridDyn XML file allows specification of definition strings that can be used as parameter values or in other
definitions.

<define name="constant1" value=5/>
<define name="constant2" value=46 locked=1/>
<define name="constant3 value="constant1*constant2" eval=1/>

The above snippet of code defines 3 constants. Internally constants are stored as strings. If the eval attribute is specified
the value string is evaluated before storing it as a string, otherwise it will be stored as a string and evaluated on use. The
locked attribute defines a global parameter that cannot be overridden by another define command. The mechanisms
allow programmatic or command line overrides of any internal definitions in the XML file. Inside the XML file they
cross scope boundaries like a global variable. Regular definitions are only valid in elements they were defined in and
subelements. So if a definition is used, define it in the root scope or it will only be applicable in a subsection of the
XML.

When using definitions they can be used as a variable in other languages wherever a string or numerical value would
be used. They can also be used in string replacements like the following code.

<bus name="bus_$#rowindex$_$#colindex$">

When evaluating the expression, the parts of the string between the $ signs gets evaluated first. In this case “#rowindex”
and “#colindex” are part of an array structure which is described in the subsection on arrays.[TODO]Add ref to array
subheading[/TODO]

After the substring replacement, the entire expression is evaluated again for other definitions. There is a small set of
predefined definitions including %date, %datetime, and %time, which contain strings of the expected values at the
time of file input.

3.6.3 custom

Translations are useful for readability, library elements allow duplication of objects with only minor modifications.
For library elements the object is constructed once from XML and duplicated. Custom objects allow duplication of
objects or sets of objects from the XML. A reference to the actual element source is stored and reprocessed at the time
the custom object is encountered. This also allows a set of object to be defined in one input form to be imported by
a different form and used to create objects described in the first. For instance you could create a library of different
object sections and import that into another XML file and only use a few of the custom definitions you are interested

16 Chapter 3. XML Input

GridDyn

in. Custom objects can use other custom objects but cannot define new custom sections. Custom objects can define a
set of required arguments and default values. When calling the custom element arguments can be defined.

A brief example using custom elements is shown below.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to test custom elements-->
<griddyn name="customtest">
<custom name="cbus">

<bus>
<voltage>rand(0.95,1.05)</voltage>

</bus>
</custom>
<array count="10">

<cbus/>
</array>
</griddyn>

Another example using arguments is shown below.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to test custom elements-->
<griddyn name="customtest">
<custom name="busarray" args="1">
<array count="arg1">
<bus>
<voltage>rand(0.95,1.05)</voltage>

</bus>
</array>

</custom>
<busarray arg1="7"/>
</griddyn>

3.6.4 configuration

A configuration element can define some parameters and operations for the XML reader itself. There are currently 2
parameters that can be specified, printlevel and match_type. The printlevel controls the verbosity of the output. The
match_type controls the default match capitalization for searching for specified fields. The following table shows valid
values for these fields.

pa-
ram-
e-
ter

value details

print-
level

none(0)
sum-
mary(1)
de-
tailed(2)

print only warnings and errors print only summary info print detailed information

match_typecapi-
tal_case_match
all exact

match on specified, lower case, and upper case values (this is the default value) match to all
cases [lex] only match to the given string. Ths operation can be used to process files where
every component and XML description field is in lower case in the xml to speed up processing
slightly

3.6. Special Elements 17

GridDyn

3.6.5 event

Events are changes that take place during the course of the GridDyn simulation execution. They can be as simple as
the example used previously or contain more complex specifications and multiple times and values. The events are
likely to be updated significantly in the near future, and while much of the specification will remain the same some
new capabilities will be added.

Parameters for events are specified like those in the components. The available element or attribute names are shown
in this table.

parameter description
target the object to extract data from
field the field of the target object to capture
time, t the time the event is scheduled to occur
units the desired units of the output
value the value associated with the event
period for periodic events sets the period
file the input file for a player type event
column the column in a data file to use for the event

The field option of event specification is by far the most flexible. Any text directly in the event element is captured as
the field.

3.6.6 recorder

Recorders are the primary data output system for GridDyn dynamic simulations. Like events, recorders have a set of
parameters associated with them. The details are in the table below. Multiple recorder elements can be specified and
the recorder for a single file can have multiple elements that get merged even if they are in different objects. They are
keyed by recorder name and/or filename. Certain properties like the sampling period are specified on a recorder basis.
Others are for the properties and data to record.

parameter default description
file outputfile.csv the file to save the data to
name recorder_# the name of the recorder for easy reference later
description description that gets put in the header of the output file
column -1 the column of the recorder in which to place the requested data
target the object to extract data from
field the field of the target object to capture
units defUnit the desired units of the output
offset 0 an offset index for a particular state
gain 1.0 a multiplier on the measurement
bias 0.0 a measurement bias
precision 7 the number of digits of precision to print for string formats
frequency 1.0 set the frequency of recording
period 1.0 set the measurement period
starttime -inf set a start time for the recorder
stoptime inf set a stop time for the recorder
autosave 0 set the recorder to save every N samples; 0 for off
reserve 0 reserve space for N samples
period_resolution 0 set the minimum resolution for any time period (not usually user specified)

Recorder fields define which property of an object to capture. This includes all properties and calculations involving

18 Chapter 3. XML Input

GridDyn

properties. All functions and expressions defined in the func section [TODO]Add ref to func section[/TODO] are valid
in recorder expressions.

3.6.7 solver

Solvers can be defined through the XML file. There are some default solvers defined but the solver element allows the
definition of custom solvers applied to specific problem types. This allows specification of specific approximations or
other configuration options for the solvers to use for solving various specific problems. Solver properties are shown in
the table below.

param-
eter

default description

print-
level

er-
ror(1)

may be specified with a string or number, “debug”(2), “error”(1), “none”(0)”, “errno” only
prints out error messages

approx “none” see the table below for details on possible options [TODO]Add ref to the table on solver
options[/TODO]

flags see the table for details on possible options [TODO]Add ref to table on flags[/TODO]
toler-
ance

1e-8 the residual tolerance to use

name solver_# the name of the solver
index auto-

matic
the specified index of the solver

file log file for the solver

Solvers have a set of options used to define what types of problems they are intended to solve. And another set of
intended approximations. This information gets passed to the models whenever a solve is attempted. A listing of the
possible modes is shown in the solver modes table below. In some cases multiple modes can be combined, in other
cases they are mutually exclusive and the second will override the earlier specification. A number of approximations
are also specified mainly targeting approximations to transmission lines. These approximations are suggestions rather
than directives and models are free to ignore them. There are 3 independent approximations that can be used in various
combinations and several descriptions which turn on the simplifications in a convenient form. Most approximations
target the acline models, but future approximations can be added specifically looking at other models.

3.6. Special Elements 19

GridDyn

mode/approximation description
local used for local solutions
dae solver is intended for solving a set of coupled differential algebraic equations
differential solver is intended to solve a set of coupled differential equations
algebraic solver is intended to solve algebraic equations only
dynamic solver is intended for dynamic simulations
powerflow solver is intended for powerflow problems (implies !dynamic and algebraic)
extended instructs the model to use an extended state formulation mainly targetted at state estimation

problems
primary opposite of extend
ac solve for both voltage and angle on the buses
dc solve only for the angle on AC buses, assume the voltage is fixed
r, small_r assume the resistance of transmission lines is small
small_angle use the small angle approximation (assume 𝑠𝑖𝑛(𝜃) = 𝜃)
coupling assume there is no coupling between the 𝑉 and 𝜃 states
normal use full detailed calculations
simple, simplified use the small_r approximation
decoupled use the coupling approximation
small_angle_decoupled use the small angle and decoupled approximations
small_angle_simplified use the small angle and small r approximations
simpli-
fied_decoupled

use the small r and decoupling approximations

fast_decoupled use all 3 approximations
linear linear

Solvers can also include a number of options that are common across all solvers (though specific solvers may not
implement them). Often specific solvers also include other options specific to that numerical solver.

mode description
dense,
sparse

set the solver to use a dense matrix solve or a sparse matrix (default)

parallel,
serial

set the solver to use parallel or serial (default) arrays, this is in the form of openMP array

con-
stant_Jacobian

tell the solver to assume the Jacobian is constant

mask tell the solver to use a masking element to shield specific variables from the solution. This functionality
is used in some cases of initial condition generation and probably shouldn’t be used externally

3.6.8 import

Import statements are used to add an external file into the simulation. The file can be of a type capable of being read
by GridDyn. Import statements are typically single element statements though they can have subelements if desired.
A couple examples are shown in this example.

<import>sep_lib.xml</import>
<import prefix="A1">subnetwork.csv</import>
<import final=true ext="xml">last_elements.odx</import>

The optional attributes/elements are descripted in the table below.

20 Chapter 3. XML Input

GridDyn

pa-
ram-
e-
ter

valid val-
ues

description

pre-
fix

string a string to prefix all object names from the imported file

fi-
nal

“true(1)”
“false(0)”

if set to true the import is delayed until after all other non-final imports and the local file have
been loaded if set to false or not included the import is processed before any locally defined
objects and in the order imports are specified

file string the file name, can also be interpreted from the element text
file-
type

string the extension to use for interpreting the import file; if not specified the extension is determined
from the file name

flags ig-
nore_step_up_transformers

the flags option is to add in additional options, it will likely be expanded as needed, currently
the only option available is to ignore step up transformers in some formats of model input.
As the file readers improve and become more integrated and consistent more options will be
available

3.6.9 directory

The directory element allows the user to specify additional search paths for GridDyn to locate any files without an
absolute path.

<directory>/home/usr/user1/GridDyn</directory>
<directory>

3.6.10 library

GridDyn file input can include a library of predefined objects. This section is defined through a library element. Any
of the components described above can be included as a library element. These library objects get stored in a separate
holding area and are copied when any object uses a ref fields with a value of the library element name. The ref field
can be either an element or an attribute. If type and ref are specified the type definition takes priority and the library
object is cloned to the newly created object, if only ref is specified a new object is cloned directly from the library
object. There can be multiple library sections, they simply get merged. By using import statements libraries can be
defined in a separate file. A simple example using libraries and references is shown below. The code describes 4
objects and generator model, an exciter and a governor, and a generator that uses the 3 previously defined submodels
to make up the dynamic components of the generator.

<library>
<model name="mod1">

<type>fourthOrder</type>
<D>0.040</D>
<H>5</H>
<Tdop>8</Tdop>
<Tqop>1</Tqop>
<Xd>1.050</Xd>
<Xdp>0.350</Xdp>
<Xq>0.850</Xq>
<Xqp>0.350</Xqp>

</model>
<exciter name="ext1">

<type>type1</type>
<Aex>0</Aex>

(continues on next page)

3.6. Special Elements 21

GridDyn

(continued from previous page)

<Bex>0</Bex>
<Ka>20</Ka>
<Ke>1</Ke>
<Kf>0.040</Kf>
<Ta>0.200</Ta>
<Te>0.700</Te>
<Tf>1</Tf>
<Urmax>50</Urmax>
<Urmin>-50</Urmin>

</exciter>
<governor name="gov1">

<type>basic</type>
<K>16.667</K>
<T1>0.100</T1>
<T2>0.150</T2>
<T3>0.050</T3>

</governor>
<generator name="gen1">

<model ref="mod1"/>
<exciter ref="ext1"/>
<governor ref="gov1"/>

</generator>
</library>

Libraries are only allowed to be defined at the root object level, they are not allowed in any element that is a part of
the root element so they are directly processed by the interpreter.

3.6.11 array

Arrays and the if statement make up the control structures in the XML file. Arrays allow objects and sets of objects
to be generated in a loop, they can even contain other loops. An example file used for building some scalability tests
is shown below. This file uses many of the concepts discussed previously.

<?xml version="1.0" encoding="utf-8"?>
<!--xml file to scalability using arrays-->
<griddyn name="test1" version="0.0.1">
<define name="garraySize" value="20"/>
<define name="gcount" value="ceil(garraySize/3)" eval="1" />
<configuration>
<match_type>exact</match_type>
</configuration>
<library>
<generator name="default">
<P>3.8*(((garraySize^2)/(gcount^2))/9)</P>
<mbase>400</mbase>
<exciter>
<type>type1</type>
<vrmin>-50</vrmin>
<vrmax>50</vrmax>
</exciter>
<model/>

<governor/>
</generator>
<load name="addLoad">

<Yp>0.5</Yp>
(continues on next page)

22 Chapter 3. XML Input

GridDyn

(continued from previous page)

<Yq>0.2</Yq>
</load>
<load name="constLd">
<P>0.1</P>
<Q>0.02</Q>
<Ip>0.1</Ip>
<Iq>0.02</Iq>
<Yp>0.1</Yp>
<Yq>0.02</Yq>
</load>

</library>
<array count="garraySize" loopvariable="#rowindex">
<array count="garraySize" loopvariable="#colindex">

<bus name="bus_$#rowindex$_$#colindex$">
<load ref="constLd"/>
</bus>
</array>
</array>
<!--add in the additional loads -->

<array start=1 stop="garraySize" loopvariable="#rowindex" interval=2>
<array start=1 stop="garraySize" loopvariable="#colindex" interval=2>

<bus name="bus_$#rowindex$_$#colindex$">
<load ref="addLoad"/>
</bus>
</array>
</array>
<!--add in the generators -->
<array start=1 stop="garraySize" loopvariable="#rowindex" interval=3>

<array start=1 stop="garraySize" loopvariable="#colindex" interval=3>
<bus name="bus_$#rowindex$_$#colindex$">

<gen ref="default"/>
<bustype>PV</bustype>
<voltage>1.01</voltage>
</bus>
</array>
</array>
<!--add in the vertical links-->
<array stop="garraySize" loopvariable="#rowindex" start="2">

<array count="garraySize" loopvariable="#colindex">
<link name="link_$#rowindex-1$_$#colindex$_to_$#rowindex$_$#colindex$">

<r>0.001</r>
<x>0.07</x>
<from>bus_$#rowindex-1$_$#colindex$</from>
<to>bus_$#rowindex$_$#colindex$</to>
</link>
</array>
</array>

<!--add in the horizonal links-->
<array count="garraySize" loopvariable="#rowindex">

<array stop="garraySize" loopvariable="#colindex" start="2">
<link name="link_$#rowindex$_$#colindex-1$_to_$#rowindex$_$#colindex$">

<r>0.001</r>
<x>0.07</x>
<from>bus_$#rowindex$_$#colindex-1$</from>
<to>bus_$#rowindex$_$#colindex$</to>

(continues on next page)

3.6. Special Elements 23

GridDyn

(continued from previous page)

</link>
</array>
</array>
<!--label the swing bus-->
<busmodify name="bus_$1+3*floor(garraySize/6)$_$1+3*floor(garraySize/6)$">
<bustype>SLK</bustype>
<id>10000000</id>
<voltage>1.03</voltage>
</busmodify>

<basepower>30</basepower>
<timestart>0</timestart>
<timestop>60</timestop>
<timestep>0.02</timestep>
<solver name="ida">
<printlevel>1</printlevel>
</solver>

</griddyn>

Arrays can have several attributes which define how the array is handled.

attribute default description
start 1 the index to start the array counter
stop X the last index to use, either stop or count must be specified
count X the number of loops, either stop or count must be specified
loopvariable #index the name of the definitions to store the loop variable
interval 1.0 the interval between each iteration of the loop counter

3.6.12 if

If elements create a conditional inclusion. Most often used for conditional inclusion based on fixed parameters to
allow a single file to do a few different scenarios. However, they can be tied in with random function generators and
arrays to generate random distributions of elements. Any element component along with import and define statements
are allowed in an if element.

The if element must have an element or attribute named condition. The condition is a string specifying a value or two
values and a comparison operator. If a single expression is given, the elements in the if statement are evaluated as long
as the expression does not result in a 0. Otherwise both sides of the expression are evaluated and the comparison is
checked. If both sides evaluate to strings, a string comparison is done, otherwise a numerical comparison if both sides
result in numerical values. Depending on the file type and reader ‘>’ and ‘<’ may need to be replaced with the XML
character codes of > and <. These codes are interpreted properly. Compound expressions are not yet supported.
Eventually the goal will be to support conditions based on object values instead of values that can be evaluated in the
element reader itself, but this capability is not yet allowed.

3.6.13 econ

The econ element describes data related to the costs and values of an object. It will be used for interaction with
optimization solvers and the root object must be an optimization type simulation. While the element works fine, it
doesn’t do anything with the data.

24 Chapter 3. XML Input

GridDyn

3.6.14 position

A position element describes data related to the geophysical (or relative) position of an object. The element is ignored
but will be further developed at a later time.

3.6.15 actions

The gridDynSimulation object can execute a number of types of actions. These can be controlled through the API
but also through an action queue. The actions are defined and stored in a queue and executed when the run function
is called. If no actions are defined some logic is in place to do something sensible, typically run a power flow then
a dynamic simulation if dynamic components were instantiated. Actions allow a much finer grained control over this
process. These actions can be loaded through the XML file and eventually in a type of script (not enabled yet). Actions
are specified through an action element containing the action string. The string is translated into an action and stored
in a queue.

<action>run 23.7</action>

The list of available commands is shown in the table below. For all lines in the table (s) implies string parameter,
(d) implies double parameter, (i) integer parameter, (X)* optional, (s|d|i) string or doulbe or int, and for a given line
everything following a # at the beginning of a word is considered a comment and ignored.

action string description
ignore XXXXXX do nothing
set parameter(s) value(d) set a particular parameter; the parameter can include an object path
setall objecttype(s) parameter(s) value(d) set a parameter on all objects of a particular type
setsolver mode(s) solver(s|i) set the solver to use for a particular mode of operation
settime newtime(d) set the simulation time
print parameter(s) setstring(s) print a parameter (can include path)
powerflowstep solutionType(s)* take a single step of the specified solution type
eventmode stop(d)* step(d)* run in event driven power flow mode until stop with step
initialize run the initialization routine
dynamic solutionType(s)* stop(d)* step(d)* run a dynamic simulation
dynamicdae stop(d)* run a dynamic simulation using DAE solver
dynamicpart stop(d)* step(d)* run a dynamic simulation using the partitioned solver
dynamicdecoupled stop(d)* step(d)* run a dynamic simulation using the decoupled solver
reset level(i) reset the simulation to the specified level
iterate interval(d)* stop(d)* run an iterative power flow with the given interval
run time(d)* run the simulation using the default mode to the given time
save subject(s) file(s) save a particular type of file
load subject(s) file(s) load a particular type of file
add addstring(s) add something to the simulation
rollback point(s|d) rollback to a saved checkpoint (not implemented yet)
checkpoint name(s) save a named checkpoint (not implemented yet)
contingency ???? run a contingency analysis (not implemented yet)
continuation ???? run a continuation analysis (not implemented yet)

3.6. Special Elements 25

GridDyn

26 Chapter 3. XML Input

CHAPTER 4

Design Philosophy

GridDyn was formulated as a tool to aid in research in simulator coupling. Its use has expanded but it is primarily a
research tool into grid simulation and power grid related numeric methods, and is designed and constructed to enable
that research. It is open source, released under a BSD license. All included code will have a similarly permissive
license. Any connections with software of other licenses will require separate download and installation. It is intended
to be fully cross platform, enabling use on all major operating systems, all libraries used internally must support the
same platforms. However interaction with other simulators, such as for distribution or communication may impose
additional platform restrictions. Optional components may not always abide by the same restrictions. Prior to release
1.0 very little effort will be expended in backwards compatibility. GridDyn was written making extensive use of C++11
constructs, and will shortly be making more use of C++14 standard constructs. Specifically allowing any features of
the standard supported by GCC 4.9.x versions. It is expected this will be the minimum version supported until newer
compilers are much more widely accessible.

4.1 Modularity

GridDyn code makes heavy use of object oriented design and polymorphism and is intended to be modular and
replaceable. The design intention is to allow users to define a new object that meets a given component specification
and have that be loaded into the simulation as easily as any previously existing object, and require no knowledge of
the implementation details of any other object in the simulation. Thus allowing new and more complex models to be
added to the system with no disruption to the rest of the system. Models also do not assume the precense of any other
object in the system, though they are allowed to check for the existence first. This is exemplified in the interaction of
generators with its subcomponents. Any combination of Generator Model, exciter, and governor should form a valid
simulation even though some combinations may not make much physical sense or be realistic.

4.2 Mathematics

The GridDyn code itself has only limited facilities for numeric solutions to the differential algebraic equations which
define a dynamic power system simulation. Instead it relies on external libraries interacting through a solver interface
tailored for each individual solver. The models are intended to be very flexible in support for an assortment of numeric
approximations and solution models, and define the equations necessary for model evaluation.

27

GridDyn

Initial development of dynamic simulation capability is done through a coupled differential algebraic solver with
variable time stepping; the primary solver used is IDA from the SUNDIALS package. It can use the dense solver or
the KLU sparse solver which is much faster. Recent work incorporates the use of a fixed time step solution mode, with
a partitioned set of solvers separating the algebraic from the differential components and solving them in alternating
fashion. At present this is much less well tested. Initial formulations use CVODE for the differential equations and
KINSOL for the algebraic solution. Kinsol is also used to solve the power flow solution. ARKODE, an ODE solver
using Runga-Kutta methods is also available for solving the ODE portion of the partitioned solution.

In order to provide support for current and future models of grid components a decision was made to distribute the
grid connectivity information and not use a Y-bus matrix as is typical in power system simulation tools. This allows
loads and tranmission lines to be modeled using arbitrary equations. This decision alters the typical equations used to
define a power flow solution at buses. Each bus simply sums the real and reactive power produced or consumed by all
connected loads, generators, and links. Those components are free to define the power as an arbitrary function of bus
voltage, angle, and frequency, provided that function is at least piecewise continuous.

Note: Continuous functions work much better, piecewise continuous functions work but don’t really play nicely with
the variable timestepping.

Defining the problem in this way comes at a cost of complexity in the complementation and likely a performance hit
but allows tremendous flexibility for incorporating novel loads, generators, and other components into power flow and
dynamic simulation solutions. The dependency information is extracted through the Jacobian funciton call. Currently
the solution always assumes the problem is non-linear even if the approximations used are in fact linear. While
GridDyn’s interaction with the solvers comes exclusively through interface objects, there may be some inherent biases
in the interface definition due to primary testing with the SUNDIALS package. These will likely be exposed when
GridDyn is tested with alternative numerical solvers.

4.3 Model Definition

GridDyn is intended to be flexible in its model definition allowing details to be defined through a number of common
power system formats. The most flexible definition is through a GridDyn specific XML format. Strictly speaking
the most flexible XML cannot be defined by an XML schema due to the fact that the readers allow element names
to describe properties of which the complete set of which cannot be described due to support for externally defined
models. Alternate formulations exist which could be standardized in a schema but no attempt has been made to
do so. The XML formulation includes a variety of programming like concepts to allow construction of complex
models quickly, including arrays and conditionals, as well as limited support for equations and variable definitions.
The file ingest library also supports importing other files through the XML and defining a library of objects that can
be referenced and copied elsewhere. The typical use case is expected to be importing a file of another format that
contains a majority of the desired simulation information and only defining the solver information and any GridDyn
specific models and adjustments in the XML. The general idea is to be as flexible and easy to use as possible for a text
based input format, as GridDyn develops support as many other formats as is practically possible. All the file ingest
functionality is contained in a separate library from the model bookkeeping and model evaluation functionality. Other
types of input can be added as necessary and some development is taking place towards a GUI which would interact
through REST service commands and JSON objects. Included in GridDyn are capabilities of searching through objects
by name, index number, or userID.

4.4 Performance

GridDyn was designed for use in an HPC environment. What that means right now is that GridDyn can interoperate
with other simulators in that environment and some considerations were put in place in the design, but GridDyn on its
own does not really take advantage of parallel processing. As of release 0.5 the transmission power flow and dynamic

28 Chapter 4. Design Philosophy

GridDyn

solve is not itself parallel in any way. Considerable thought has been put into how that might be accomplished in
later versions but it is not presently in place. Initial steps will include adding in optional OpenMP pragmas to take
advantage of the inherent independence of the objects in calculation of the mathematical operations such as residual
or Jacobian. OpenMP vector operations can be enabled in SUNDIALS, though this is only expected to result in small
performance gains and only for models over 5000 buses. Further tests will be done to determine exact performance
gains.

Some effort has gone into improving the performance of the power flow solve and only incremental gains are expected
at this point using the current solve methodology. No effort has been expended on the dynamic simulation so some
performance improvements can be expected in that area when examined.

The system has no inherent size limitations. Limited only by memory on any given system. Scalability studies have
been carried out to solving a million bus model, It could probably go higher but the practical value of such a single
solve is unclear as of yet.

4.5 Model Libraries

The aim thus far in GridDyn has been the development of the interfaces. The models available are the result of
programmatic needs or the need to ensure the simulator is capable of dealing with specific kinds of model interactions.
As a result the models presently available represent only a small subset of those defined in power system libraries.
More will be available as time goes on, but the idea is not to have a large collection internally but to enable testing of
new models, and to incorporate model definition libraries through the use of other tools and interfaces such as FMI,
and possibly others as needed.

4.6 Testing

A suite of test cases is available and will continue to grow as more components and systems are thoroughly tested. The
nature of the test suite is evolving along with the code and will continue to do so. It makes use of the BOOST test suite
of tools and if built creates 5 executable test programs that test the various aspects of the system. While we are still a
ways from that target 100% test coverage is a goal though likely not realistic in the near future. The code is regularly
compiled on at least 5 different compilers and multiple operating systems and strives for warning free operation.

4.7 Test Programs

If enabled 5 test programs are built. These programs execute the unit test suite for testing GridDyn. They are divided
into 5 programs. testLibrary runs tests aimed at testing operation of the various libraries used In GridDyn. The
testComponents program executes test cases targeted at the individual model components of GridDyn. The third,
testSystem, runs system level tests and some performance and validation tests on GridDyn. The testSharedLibrary
tests using GridDyn as a shared library. The last, extraTests includes some longer running tests and performance tests.
After installation these test programs are placed in the install directory and can be executed by simply running the
executable. Specific tests can be executed with command line parameters.

> ./testComponents --run_test=block_tests
> ./testComponents --run_test=block_tests/block_alg_diff_jac_test
> ./testLibrary -h

4.5. Model Libraries 29

GridDyn

30 Chapter 4. Design Philosophy

CHAPTER 5

Development Notes

GridDyn is very much a work in progress, development is proceeding on a number of different aspects from a number
of directions and many components are in states of partial operation or are awaiting development in other aspects of
the code base. The notes in this section attempt to capture the development status of various Griddyn components and
note where active and planned development is taking place.

5.1 Interface and Executables

A gridDynServer executable is in development. This program will become the main means of interacting with sim-
ulations. The plan will be for it to support multiple running simulations and allow users to interact through a set of
interfaces. Planned interfaces include a RESTful service interface for ethernet based interaction, which will eventually
be the basis of interaction with a GUI, a command line interface, and a direct application interface through TCP/UDP
or MPI.

Also in development is a wrapper around the simulation engine into a Functional Mockup Interface to allow GridDyn
to interact with other simulations through the FMI for co-simulation framework.

5.2 Models

The models included in GridDyn are an evolving set. They have been added to address particular research questions or
needs or test specific aspects of GridDyn operation. The next several subsections talk about the state of development
in the various components available in GridDyn.

5.2.1 Buses

The bus code is well tested but is constantly evolving to simplify the code or areas of responsibility, or to improve
operation, even though the equations used in the bus evaluation are quite straightforward. The bus itself is one of the
more complex objects in GridDyn in order to handle the management of loads and generators and the associated limits
and controls. As well as the associated transition between powerflow and dynamic simulation. Currently available are

31

GridDyn

an ACbus, a DC bus for association with HVDC transission lines, a trivial bus, and an infinite bus. Some plans are in
place for a 3-phase bus but that has been low on the priority list. The DC bus is not thoroughly tested, particularly in
dynamic contexts.

5.2.2 Area

At present areas are primary used as a way to group objects. Ongoing development is taking place to add in area wide
controls such as AGC. Some of these structures are in place but have yet to be tied in with the Area model itself. There
is work ongoing to do this and some form will be functional within the next 3 months. Areas and subareas can be
configured through the GridDyn XML format but none of the other available formats such as CDF or PTI currently
make use of the area information available in those formats. This will be added alongside the development of area
controls.

5.2.3 Links

The basic AC link has been tested thoroughly in powerflow and dynamic simulations by comparison with standard
test cases. Other link models such as DC links, and an adjustableTransformer model have been tested in power flow
simulations, but the dynamics of them are a work in progress. They operate fine in that context but do not include the
control dynamics, at least not at a level that is well-tested.

5.2.4 Relays

The generic relay is one of the more complex objects to setup. Most use cases involve using one the specific relay
types as they embody the information for setting up a relay. There are no known issues with the relays though given
their complexity it is likely there are many circumstances when they do not function appropriately, or cause issues with
interaction of the other parts of the system. The basic relay contains tremendous flexibility and it is not recommended
that beginning users attempt to directly instantiate it. You are of course welcome to try but the specification of
conditions and actions is somewhat more complex than most other system properties through the XML. Other relay
types are in development as needed by specific usage requirements.

5.2.5 Loads

A number of types of loads are modeled in GridDyn. The basic model is a ZIP model. Extensions include ramps and a
variety of other load shapes and others such as an exponential load and a frequency dependent load. Also included are
motor loads, including models of first order, 3rd order and 5th order induction models, and include mechanisms for
modeling motor stalling. The 5th order model has some potential issues during certain conditions that have not been
fully debugged. All work in powerflow and dynamic simulation. Code for loading a GridLab-D distribution system is
included in the release but will not function without corresponding alterations to a GridLab-D instance and operation
with Pargrid, neither of which are included in this release, so for all practical purposes it will revert to a debug mode
with a simulated distribution simulation intended for debugging operations. The actual functionality necessary for
coupling with a distribution system will hopefully be released in the near future, though could be made available for
partners. There is a composite load model available. This is a more generic container for containing other load models.
This is distinct and more general than the composite load model defined by FERC. Though an instantiation of that
model is planned and will make use of the generic composite model in GridDyn.

Generators

These include governors, exciters, generator models, and power system stabilizers. The variable generator also has
mechanisms for including sources which are data generators, and filters. The combination of which creates a mech-
anism for feeding weather data to a solar or wind plant and converting that into power. The generator is specifically
formulated to allow any/all/none of the subcomponents to be present and still operate. A default generator model is

32 Chapter 5. Development Notes

GridDyn

put into place if none is specified and a dynamic simulation is required. A third generator which includes a notion of
energy storage is in planning stages.

5.2.6 Generator Models

A wide assortment of genModels are included. Most have been debugged and tested. The classical generator model
includes a notion of a stabilizer due to inherent instabilities under fault conditions when attached to an exciter and/or
governor. Not that the classical generator model is an appropriate model to use for such circumstances, but nonetheless
a stabilizer was incorporated to make the model stable. The incorporation of saturation into the models is not complete.
The models accept the parameters but are not included in the calculation. GENROU and GENSAL models are being
developed but are not complete as of release 0.5.

5.2.7 Exciters

Available exciters include simple, IEEE type1, IEEE type2, DC1A, and DC2A. The DC2A model has some undiag-
nosed issue in particular situations and is not recommended for use at present.

5.2.8 Governors

The basic governor and TGOV1 models are operational, others are not completed and further work is being delayed
until a more general control system model is in place which will greatly simplify governor construction as well as
other control systems. The deadband is not working in TGOV1.

5.2.9 Power System Stabilizers

The current PSS code is a placeholder for future work. No PSS model is currently available, though some initial design
work has taken place. The work has been delayed until the control system code is operational.

5.2.10 Control Blocks

Control blocks are a building block for other models and a number of them are used in other models throughout
Griddyn. Development on the generic transfer function block is not finished but the others are working and tested.
These will form the building blocks of a set of general control system modules which could be used to build other
types of more complex models.

5.3 Others

Other components in Griddyn include sources which are operational but not well tested in practice, schedulers which
are used to control generator scheduling, and other types of controllers for AGC, dispatch, and other sorts of controls.
Most of these are in various states of development and not well tested.

5.3.1 Events

Griddyn supports a notion of events which can be scheduled in a simulation and can basically alter any property of
the system with the exception of some models prohibiting changing of certain properties after simulation has begun,
in this case the event will still be valid, it just won’t do anything. Support for more complex events involving multiple
devices in a more straightforward fashion is planned.

5.3. Others 33

GridDyn

5.3.2 Recorders

Support for extracting any calculated field or property from an object is supported through grabber objects. This can
be done directly via the state arrays or from the objects themselves. The files can be saved periodically or at the end of
the simulation in a binary format or in CSV. Readers for the binary format are available in C++, Matlab, and Python.
If a large amount of data is captured frequently for dynamic simulations there is currently a performance hit. There
are ideas for mitigating this that will be addressed when the performance of the dynamic simulation is studied and
addressed.

5.3.3 Simulation

Some of the mechanics and interfacing of the planned optimization extension are in place but nothing actually works
yet, so don’t use it.

5.3.4 FMU Interaction

This works in some cases but is a little more complex to set up than the rest of the code as it is under significant active
development, therefore it is not recommended for use at this time.

5.4 File Input

GridDyn is capable of reading XML and Json files defining the GridDyn data directly and these formats can take
advantage of all GridDyn capabilities. Json is not as well tested and was targeted mainly for the server interface, but
it should work as a file format just fine. A fairly flexible CSV input file reader is also available for inputing larger
datasets in a more workable format. CDF files are read though the area and a few other properties not important for
powerflow are not loaded into GridDyn yet. Most of the common elements in raw and pti les are also loaded properly.
Some of the more exotic elements such as multiterminal DC lines and 3-way transformers are not yet, mainly since we
have no examples of such things in example files. EPC files for PSLF are the same though used less extensively than
raw files. Matlab files from Matpower and PSAT can also be loaded. Not all dynamic models from PSAT are available,
for DYR files models that match those available are loaded and some others are translated to available models. The
library of models in GridDyn is much smaller than those available in commercial tools. Support for other formats is
added as needed by projects.

34 Chapter 5. Development Notes

CHAPTER 6

CMake Options

The CMake build scripts for GridDyn support a number of configuration options that can be set via either the cmake-
gui or the command line cmake command using -D<VAR>=<VALUE> arguments. The CMake manual available at
https://cmake.org/cmake/help/latest/manual/cmake.1.html

describes use of -D and other arguments in more detail.

BOOST_INSTALL_PATH Sets the root location of Boost. Can be used if Boost is not found in the system directories
or if a different version is desired.

BUILD_SHARED_LIBS Turns on building of the GridDyn C and C++ shared libraries
(BUILD_GRIDDYN_C_SHARED_LIBRARY and BUILD_GRIDDYN_CXX_SHARED_LIBRARY options).

BUILD_TESTING Enable the test executables to be built.

ENABLE_GRIDDYN_LOGGING Enables all normal, debug, and trace logging in GridDyn.

ENABLE_GRIDDYN_DEBUG_LOGGING Unselecting disables all DEBUG and TRACE log messages from get-
ting compiled.

ENABLE_GRIDDYN_TRACE_LOGGING Unselecting disables all TRACE log messages from getting compiled.

DOXYGEN_OUTPUT_DIR Location for the generated doxygen documentation.

ENABLE_64BIT_INDEXING Enables support inside GridDyn for more than 2:sup:32-2 states or objects.

ENABLE_FMI Enable support for FMI objects.

ENABLE_FMI_EXPORT Enable construction of a binary FMI shared library for GridDyn.

ENABLE_FSKIT Enable to build additional libraries and support for integration into FSKIT and PARGRID for tool
coupling.

ENABLE_HELICS_EXECUTABLE Enable the HELICS executable to be built for tool coupling using HELICS
for communication.

ENABLE_KLU Option to disable KLU (not recommended [slow]; prefer to turn on AUTOBUILD_KLU)

ENABLE_MULTITHREADING Disable multithreading in GridDyn libraries.

ENABLE_MPI Enable MPI networking library.

35

https://cmake.org/cmake/help/latest/manual/cmake.1.html

GridDyn

ENABLE_OPENMP Enable OpenMP support.

ENABLE_OPENMP_GRIDDYN Enables OpenMP use internal to GridDyn.

ENABLE_OPENMP_SUNDIALS Enables the SUNDIALS NVector OpenMP implementation.

ENABLE_YAML Enables YAML file support in GridDyn.

ENABLE_EXTRA_MODELS Compile and load extraModels.

ENABLE_EXTRA_SOLVERS Compile and load extraSolvers (including braid, paradae).

ENABLE_NETWORKING_LIBRARY Enable network based communication components.

ENABLE_TCP Enable TCP connection library. Depends on Networking.

ENABLE_DIME Enable connection with DIME. Depends on Networking.

ENABLE_ZMQ Enable ZMQ connection library. Depends on Networking.

ENABLE_PLUGINS Build libpluginLibrary

ENABLE_OPTIMIZATION_LIBRARY Enable optimization libraries.

ENABLE_CODE_COVERAGE_TEST Build a target for testing code coverage.

ENABLE_GRIDDYN_DOXYGEN Generate Doxygen doc target.

ENABLE_CLANG_TOOLS If Clang is found, enable some custom targets for Clang formatting and tidy.

ENABLE_PACKAGE_BUILD Add projects for making packages and installers for GridDyn.

ENABLE_EXTRA_COMPILER_WARNINGS Enable more compiler warnings (full list in con-
fig/cmake/compiler_flags.cmake)

ENABLE_EXPERIMENTAL_TEST_CASES Enable some experimental test cases in the test suite.

FORCE_DEPENDENCY_REBUILD Rebuild third party dependencies, even if they’re already installed.

LOAD_ARKODE Build in support for ARKODE for solving differential equations. Not used at present but will be
in the near future.

LOAD_CVODE Build in support for CVODE for solving differential equations. Not used at present but will be in
the near future.

SuiteSparse_INSTALL_PATH The location of the KLU installation if it was not found in the system directories.

SUNDIALS_INSTALL_PATH The location of the SUNDIALS installation if it wasn’t found (or
AUTOBUILD_SUNDIALS is disabled).

36 Chapter 6. CMake Options

CHAPTER 7

Settable Object Properties

The tables here describe the parameters for each of the models present in GridDyn as of Version 0.5. The tables are
automatically generated via scripts so there are a few bugs and some missing information as of yet. Each table has 4
columns. The first column specifies the string or strings that can be used to set this property, multiple strings that do the
same thing are separated by a comma. The second columns defines the type of parameter, number implies a numeric
value, string implies a string field, and flag is a flag or boolean variable which can be set to true with “true”, or any
number greater than 0.1 (typically 1), and set to false for any number less than 0.1 or “false”. The third column lists
the default value if applicable and the fourth column is a description. In many cases the default units will be described
in [] at the beginning of the description, the default units are the units of the default and the unit that is assumed if no
units are given to the set command. All the set functions cascade to parent classes which are identified in the table
captions.

37

GridDyn

38 Chapter 7. Settable Object Properties

CHAPTER 8

Style Guide

8.1 Naming Styles

8.1.1 Classes

Camel case names starting with a Capital letter

e.g. GridDynClass

8.1.2 Class Methods

Camel case names starting with a lower case letter

e.g. gridDynMethod

8.1.3 Class Static Members

Camel case names starting with lower case and preceded by a s_

e.g. s_staticMember

8.1.4 Class Members

Camel case names starting with lower case and preceded by a m_

e.g. m_classMember

39

GridDyn

Model Parameters

A subset of class members specifically referring to settable model parameters.

Engineering reference model parameters are preceded by mp_, K is used for gains, T for time constants, R for resis-
tances, X for impedances, and others are used as appropriate, typically using a capital letter first followed by a number
of other lower case letters.

e.g. mp_K1, mp_T3, mp_Rs

Pointers

Camel case starting with a lower case and preceded by p_

e.g. p_classMemberPointer

8.1.5 Function Names

Camel case starting with lower case

e.g. functionName

8.1.6 Function Arguments

Camel case starting with lower case

e.g. functionName(type functionArgument1, type2 functionArgument2)

8.1.7 Enumeration Names

Lower case separated by _ and followed by _t

e.g. enumeration_name_t

8.1.8 Enumeration Fields

Lower case separated by _

e.g. enumeration_field

8.1.9 Global Constants

Capital letters preceded by a lower case k

e.g. kCONSTANT

8.1.10 Macros

Capital letters with words separated by _

e.g. MY_MACRO

40 Chapter 8. Style Guide

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

41

	Getting Started
	Prerequisites
	Installation Notes
	Running GridDyn

	GridDyn Components
	Buses
	Areas
	Links
	Relays

	XML Input
	Initial Example
	Parameter Specification
	Functions and Mathematical Operations
	Component Description
	Object Identification
	Special Elements

	Design Philosophy
	Modularity
	Mathematics
	Model Definition
	Performance
	Model Libraries
	Testing
	Test Programs

	Development Notes
	Interface and Executables
	Models
	Others
	File Input

	CMake Options
	Settable Object Properties
	Style Guide
	Naming Styles

	Indices and tables

